@@ -289,6 +289,94 @@ begin
289
289
exact (lintegral_mono_set' hst),
290
290
end
291
291
292
+
293
+ section continuous_set_integral
294
+ /-! ### Continuity of the set integral
295
+
296
+ We prove that for any set `s`, the function `λ f : α →₁[μ] E, ∫ x in s, f x ∂μ` is continuous. -/
297
+
298
+ variables [normed_group E] [measurable_space E] [second_countable_topology E] [borel_space E]
299
+ {𝕜 : Type *} [is_R_or_C 𝕜] [measurable_space 𝕜]
300
+ [normed_group F] [measurable_space F] [second_countable_topology F] [borel_space F]
301
+ [normed_space 𝕜 F]
302
+ {p : ℝ≥0 ∞} {μ : measure α}
303
+
304
+ /-- For `f : Lp E p μ`, we can define an element of `Lp E p (μ.restrict s)` by
305
+ `(Lp.mem_ℒp f).restrict s).to_Lp f`. This map is additive. -/
306
+ lemma Lp_to_Lp_restrict_add (f g : Lp E p μ) (s : set α) :
307
+ ((Lp.mem_ℒp (f + g)).restrict s).to_Lp ⇑(f + g)
308
+ = ((Lp.mem_ℒp f).restrict s).to_Lp f + ((Lp.mem_ℒp g).restrict s).to_Lp g :=
309
+ begin
310
+ ext1,
311
+ refine (ae_restrict_of_ae (Lp.coe_fn_add f g)).mp _,
312
+ refine (Lp.coe_fn_add (mem_ℒp.to_Lp f ((Lp.mem_ℒp f).restrict s))
313
+ (mem_ℒp.to_Lp g ((Lp.mem_ℒp g).restrict s))).mp _,
314
+ refine (mem_ℒp.coe_fn_to_Lp ((Lp.mem_ℒp f).restrict s)).mp _,
315
+ refine (mem_ℒp.coe_fn_to_Lp ((Lp.mem_ℒp g).restrict s)).mp _,
316
+ refine (mem_ℒp.coe_fn_to_Lp ((Lp.mem_ℒp (f+g)).restrict s)).mono (λ x hx1 hx2 hx3 hx4 hx5, _),
317
+ rw [hx4, hx1, pi.add_apply, hx2, hx3, hx5, pi.add_apply],
318
+ end
319
+
320
+ /-- For `f : Lp E p μ`, we can define an element of `Lp E p (μ.restrict s)` by
321
+ `(Lp.mem_ℒp f).restrict s).to_Lp f`. This map commutes with scalar multiplication. -/
322
+ lemma Lp_to_Lp_restrict_smul [opens_measurable_space 𝕜] (c : 𝕜) (f : Lp F p μ) (s : set α) :
323
+ ((Lp.mem_ℒp (c • f)).restrict s).to_Lp ⇑(c • f) = c • (((Lp.mem_ℒp f).restrict s).to_Lp f) :=
324
+ begin
325
+ ext1,
326
+ refine (ae_restrict_of_ae (Lp.coe_fn_smul c f)).mp _,
327
+ refine (mem_ℒp.coe_fn_to_Lp ((Lp.mem_ℒp f).restrict s)).mp _,
328
+ refine (mem_ℒp.coe_fn_to_Lp ((Lp.mem_ℒp (c • f)).restrict s)).mp _,
329
+ refine (Lp.coe_fn_smul c (mem_ℒp.to_Lp f ((Lp.mem_ℒp f).restrict s))).mono
330
+ (λ x hx1 hx2 hx3 hx4, _),
331
+ rw [hx2, hx1, pi.smul_apply, hx3, hx4, pi.smul_apply],
332
+ end
333
+
334
+ /-- For `f : Lp E p μ`, we can define an element of `Lp E p (μ.restrict s)` by
335
+ `(Lp.mem_ℒp f).restrict s).to_Lp f`. This map is non-expansive. -/
336
+ lemma norm_Lp_to_Lp_restrict_le (s : set α) (f : Lp E p μ) :
337
+ ∥((Lp.mem_ℒp f).restrict s).to_Lp f∥ ≤ ∥f∥ :=
338
+ begin
339
+ rw [Lp.norm_def, Lp.norm_def, ennreal.to_real_le_to_real (Lp.snorm_ne_top _) (Lp.snorm_ne_top _)],
340
+ refine (le_of_eq _).trans (snorm_mono_measure _ measure.restrict_le_self),
341
+ { exact s, },
342
+ exact snorm_congr_ae (mem_ℒp.coe_fn_to_Lp _),
343
+ end
344
+
345
+ variables (α F 𝕜)
346
+ /-- Continuous linear map sending a function of `Lp F p μ` to the same function in
347
+ `Lp F p (μ.restrict s)`. -/
348
+ def Lp_to_Lp_restrict_clm [borel_space 𝕜] (μ : measure α) (p : ℝ≥0 ∞) [hp : fact (1 ≤ p)]
349
+ (s : set α) :
350
+ Lp F p μ →L[𝕜] Lp F p (μ.restrict s) :=
351
+ @linear_map.mk_continuous 𝕜 (Lp F p μ) (Lp F p (μ.restrict s)) _ _ _ _ _
352
+ ⟨λ f, mem_ℒp.to_Lp f ((Lp.mem_ℒp f).restrict s), λ f g, Lp_to_Lp_restrict_add f g s,
353
+ λ c f, Lp_to_Lp_restrict_smul c f s⟩
354
+ 1 (by { intro f, rw one_mul, exact norm_Lp_to_Lp_restrict_le s f, })
355
+
356
+ variables {α F 𝕜}
357
+
358
+ variables (𝕜)
359
+ lemma Lp_to_Lp_restrict_clm_coe_fn [borel_space 𝕜] [hp : fact (1 ≤ p)] (s : set α) (f : Lp F p μ) :
360
+ Lp_to_Lp_restrict_clm α F 𝕜 μ p s f =ᵐ[μ.restrict s] f :=
361
+ mem_ℒp.coe_fn_to_Lp ((Lp.mem_ℒp f).restrict s)
362
+ variables {𝕜}
363
+
364
+ @[continuity]
365
+ lemma continuous_set_integral [normed_space ℝ E] [complete_space E] (s : set α) :
366
+ continuous (λ f : α →₁[μ] E, ∫ x in s, f x ∂μ) :=
367
+ begin
368
+ haveI : fact ((1 : ℝ≥0 ∞) ≤ 1 ) := ⟨le_rfl⟩,
369
+ have h_comp : (λ f : α →₁[μ] E, ∫ x in s, f x ∂μ)
370
+ = (integral (μ.restrict s)) ∘ (λ f, Lp_to_Lp_restrict_clm α E ℝ μ 1 s f),
371
+ { ext1 f,
372
+ rw [function.comp_apply, integral_congr_ae (Lp_to_Lp_restrict_clm_coe_fn ℝ s f)], },
373
+ rw h_comp,
374
+ exact continuous_integral.comp (Lp_to_Lp_restrict_clm α E ℝ μ 1 s).continuous,
375
+ end
376
+
377
+ end continuous_set_integral
378
+
379
+
292
380
end measure_theory
293
381
294
382
open measure_theory asymptotics metric
0 commit comments