Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 3e381ad

Browse files
chore(ring_theory/*): split lines (#6316)
Co-authored-by: Julian-Kuelshammer <68201724+Julian-Kuelshammer@users.noreply.github.com>
1 parent 32b9b21 commit 3e381ad

11 files changed

+110
-57
lines changed

src/ring_theory/algebra_tower.lean

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -74,7 +74,8 @@ le_antisymm (adjoin_le $ set.image_subset_iff.2 $ λ y hy, ⟨y, subset_adjoin h
7474
theorem adjoin_algebra_map (R : Type u) (S : Type v) (A : Type w)
7575
[comm_ring R] [comm_ring S] [comm_ring A] [algebra R S] [algebra S A] [algebra R A]
7676
[is_scalar_tower R S A] (s : set S) :
77-
adjoin R (algebra_map S A '' s) = subalgebra.map (adjoin R s) (is_scalar_tower.to_alg_hom R S A) :=
77+
adjoin R (algebra_map S A '' s) =
78+
subalgebra.map (adjoin R s) (is_scalar_tower.to_alg_hom R S A) :=
7879
le_antisymm (adjoin_le $ set.image_subset_iff.2 $ λ y hy, ⟨y, subset_adjoin hy, rfl⟩)
7980
(subalgebra.map_le.2 $ adjoin_le $ λ y hy, subset_adjoin ⟨y, hy, rfl⟩)
8081

@@ -199,7 +200,8 @@ begin
199200
have hsy : ∀ (yi yj yk ∈ y), f (yi * yj) yk ∈ s := λ yi yj yk hyi hyj hyk,
200201
show function.uncurry f (yi * yj, yk) ∈ s,
201202
from mem_image_of_mem _ $ mem_product.2 ⟨mem_union_right _ $ finset.mul_mem_mul hyi hyj, hyk⟩,
202-
have hxy : ∀ xi ∈ x, xi ∈ span (algebra.adjoin A (↑s : set B)) (↑(insert 1 y : finset C) : set C) :=
203+
have hxy : ∀ xi ∈ x, xi ∈ span (algebra.adjoin A (↑s : set B))
204+
(↑(insert 1 y : finset C) : set C) :=
203205
λ xi hxi, hf xi ▸ sum_mem _ (λ yj hyj, smul_mem
204206
(span (algebra.adjoin A (↑s : set B)) (↑(insert 1 y : finset C) : set C))
205207
⟨f xi yj, algebra.subset_adjoin $ hsx xi hxi yj hyj⟩

src/ring_theory/dedekind_domain.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,8 @@ giving three equivalent definitions (TODO: and shows that they are equivalent).
2222
is not a field, Noetherian, and the localization at every nonzero prime ideal is a DVR.
2323
- `is_dedekind_domain_inv` alternatively defines a Dedekind domain as an integral domain that
2424
is not a field, and every nonzero fractional ideal is invertible.
25-
- `is_dedekind_domain_inv_iff` shows that this does note depend on the choice of field of fractions.
25+
- `is_dedekind_domain_inv_iff` shows that this does note depend on the choice of field of
26+
fractions.
2627
2728
## Implementation notes
2829

src/ring_theory/derivation.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -202,7 +202,8 @@ def comp_der (f : M →ₗ[A] N) (D : derivation R A M) : derivation R A N :=
202202
{ to_fun := λ a, f (D a),
203203
map_add' := λ a1 a2, by rw [D.map_add, f.map_add],
204204
map_smul' := λ r a, by rw [derivation.map_smul, map_smul_of_tower],
205-
leibniz' := λ a b, by simp only [derivation.leibniz, linear_map.map_smul, linear_map.map_add, add_comm] }
205+
leibniz' := λ a b, by simp only [derivation.leibniz, linear_map.map_smul, linear_map.map_add,
206+
add_comm] }
206207

207208
@[simp] lemma comp_der_apply (f : M →ₗ[A] N) (D : derivation R A M) (a : A) :
208209
f.comp_der D a = f (D a) := rfl

src/ring_theory/free_comm_ring.lean

Lines changed: 14 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -187,7 +187,8 @@ lift (λ p, if H : p ∈ s then of ⟨p, H⟩ else 0)
187187

188188
section restriction
189189
variables (s : set α) [decidable_pred s] (x y : free_comm_ring α)
190-
@[simp] lemma restriction_of (p) : restriction s (of p) = if H : p ∈ s then of ⟨p, H⟩ else 0 := lift_of _ _
190+
@[simp] lemma restriction_of (p) :
191+
restriction s (of p) = if H : p ∈ s then of ⟨p, H⟩ else 0 := lift_of _ _
191192

192193
end restriction
193194

@@ -200,7 +201,8 @@ assume hps : is_supported (of p) s, begin
200201
{ intros x hx, refine ring.in_closure.rec_on hx _ _ _ _,
201202
{ use 1, rw [ring_hom.map_one], norm_cast },
202203
{ use -1, rw [ring_hom.map_neg, ring_hom.map_one], norm_cast },
203-
{ rintros _ ⟨z, hzs, rfl⟩ _ _, use 0, rw [ring_hom.map_mul, lift_of, if_pos hzs, zero_mul], norm_cast },
204+
{ rintros _ ⟨z, hzs, rfl⟩ _ _, use 0, rw [ring_hom.map_mul, lift_of, if_pos hzs, zero_mul],
205+
norm_cast },
204206
{ rintros x y ⟨q, hq⟩ ⟨r, hr⟩, refine ⟨q+r, _⟩, rw [ring_hom.map_add, hq, hr], norm_cast } },
205207
specialize this (of p) hps, rw [lift_of] at this, split_ifs at this, { exact h },
206208
exfalso, apply ne.symm int.zero_ne_one,
@@ -215,11 +217,13 @@ begin
215217
refine ring.in_closure.rec_on hxs _ _ _ _,
216218
{ rw ring_hom.map_one, refl },
217219
{ rw [ring_hom.map_neg, ring_hom.map_neg, ring_hom.map_one], refl },
218-
{ rintros _ ⟨p, hps, rfl⟩ n ih, rw [ring_hom.map_mul, restriction_of, dif_pos hps, ring_hom.map_mul, map_of, ih] },
220+
{ rintros _ ⟨p, hps, rfl⟩ n ih,
221+
rw [ring_hom.map_mul, restriction_of, dif_pos hps, ring_hom.map_mul, map_of, ih] },
219222
{ intros x y ihx ihy, rw [ring_hom.map_add, ring_hom.map_add, ihx, ihy] }
220223
end
221224

222-
theorem exists_finite_support (x : free_comm_ring α) : ∃ s : set α, set.finite s ∧ is_supported x s :=
225+
theorem exists_finite_support (x : free_comm_ring α) :
226+
∃ s : set α, set.finite s ∧ is_supported x s :=
223227
free_comm_ring.induction_on x
224228
⟨∅, set.finite_empty, is_supported_neg is_supported_one⟩
225229
(λ p, ⟨{p}, set.finite_singleton p, is_supported_of.2 $ set.mem_singleton _⟩)
@@ -259,11 +263,14 @@ variable {α}
259263
free_ring.lift_of _ _
260264
@[simp, norm_cast] protected lemma coe_neg (x : free_ring α) : ↑(-x) = -(x : free_comm_ring α) :=
261265
(free_ring.lift _).map_neg _
262-
@[simp, norm_cast] protected lemma coe_add (x y : free_ring α) : ↑(x + y) = (x : free_comm_ring α) + y :=
266+
@[simp, norm_cast] protected lemma coe_add (x y : free_ring α) :
267+
↑(x + y) = (x : free_comm_ring α) + y :=
263268
(free_ring.lift _).map_add _ _
264-
@[simp, norm_cast] protected lemma coe_sub (x y : free_ring α) : ↑(x - y) = (x : free_comm_ring α) - y :=
269+
@[simp, norm_cast] protected lemma coe_sub (x y : free_ring α) :
270+
↑(x - y) = (x : free_comm_ring α) - y :=
265271
(free_ring.lift _).map_sub _ _
266-
@[simp, norm_cast] protected lemma coe_mul (x y : free_ring α) : ↑(x * y) = (x : free_comm_ring α) * y :=
272+
@[simp, norm_cast] protected lemma coe_mul (x y : free_ring α) :
273+
↑(x * y) = (x : free_comm_ring α) * y :=
267274
(free_ring.lift _).map_mul _ _
268275

269276
variable (α)

src/ring_theory/ideal/basic.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,8 @@ end ideal
5555

5656
variables {a b : α}
5757

58-
-- A separate namespace definition is needed because the variables were historically in a different order
58+
-- A separate namespace definition is needed because the variables were historically in a different
59+
-- order.
5960
namespace ideal
6061
variables [comm_semiring α] (I : ideal α)
6162

src/ring_theory/ideal/operations.lean

Lines changed: 40 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -138,12 +138,15 @@ le_antisymm (smul_le.2 $ λ r hrij n hn, let ⟨ri, hri, rj, hrj, hrijr⟩ := me
138138
protected theorem smul_assoc : (I • J) • N = I • (J • N) :=
139139
le_antisymm (smul_le.2 $ λ rs hrsij t htn,
140140
smul_induction_on hrsij
141-
(λ r hr s hs, (@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
141+
(λ r hr s hs,
142+
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
142143
((zero_smul R t).symm ▸ submodule.zero_mem _)
143144
(λ x y, (add_smul x y t).symm ▸ submodule.add_mem _)
144145
(λ r s h, (@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ submodule.smul_mem _ _ h))
145-
(smul_le.2 $ λ r hr sn hsn, suffices J • N ≤ submodule.comap (r • linear_map.id) ((I • J) • N), from this hsn,
146-
smul_le.2 $ λ s hs n hn, show r • (s • n) ∈ (I • J) • N, from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
146+
(smul_le.2 $ λ r hr sn hsn, suffices J • N ≤ submodule.comap (r • linear_map.id) ((I • J) • N),
147+
from this hsn,
148+
smul_le.2 $ λ s hs n hn, show r • (s • n) ∈ (I • J) • N,
149+
from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
147150

148151
variables (S : set R) (T : set M)
149152

@@ -307,7 +310,8 @@ variables {I J K}
307310
lemma span_mul_span' (S T : set R) : span S * span T = span (S*T) :=
308311
by { unfold span, rw submodule.span_mul_span,}
309312

310-
lemma span_singleton_mul_span_singleton (r s : R) : span {r} * span {s} = (span {r * s} : ideal R) :=
313+
lemma span_singleton_mul_span_singleton (r s : R) :
314+
span {r} * span {s} = (span {r * s} : ideal R) :=
311315
by { unfold span, rw [submodule.span_mul_span, set.singleton_mul_singleton],}
312316

313317
theorem mul_le_inf : I * J ≤ I ⊓ J :=
@@ -325,7 +329,8 @@ end
325329
theorem mul_eq_inf_of_coprime (h : I ⊔ J = ⊤) : I * J = I ⊓ J :=
326330
le_antisymm mul_le_inf $ λ r ⟨hri, hrj⟩,
327331
let ⟨s, hsi, t, htj, hst⟩ := submodule.mem_sup.1 ((eq_top_iff_one _).1 h) in
328-
mul_one r ▸ hst ▸ (mul_add r s t).symm ▸ ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj) (mul_mem_mul hri htj)
332+
mul_one r ▸ hst ▸ (mul_add r s t).symm ▸ ideal.add_mem (I * J) (mul_mem_mul_rev hsi hrj)
333+
(mul_mem_mul hri htj)
329334

330335
variables (I)
331336
theorem mul_bot : I * ⊥ = ⊥ :=
@@ -387,7 +392,8 @@ def radical (I : ideal R) : ideal R :=
387392
zero_mem' := ⟨1, (pow_one (0:R)).symm ▸ I.zero_mem⟩,
388393
add_mem' := λ x y ⟨m, hxmi⟩ ⟨n, hyni⟩, ⟨m + n,
389394
(add_pow x y (m + n)).symm ▸ I.sum_mem $
390-
show ∀ c ∈ finset.range (nat.succ (m + n)), x ^ c * y ^ (m + n - c) * (nat.choose (m + n) c) ∈ I,
395+
show ∀ c ∈ finset.range (nat.succ (m + n)),
396+
x ^ c * y ^ (m + n - c) * (nat.choose (m + n) c) ∈ I,
391397
from λ c hc, or.cases_on (le_total c m)
392398
(λ hcm, I.mul_mem_right _ $ I.mul_mem_left _ $ nat.add_comm n m ▸
393399
(nat.add_sub_assoc hcm n).symm ▸
@@ -449,13 +455,20 @@ let ⟨m, (hrm : r ∉ radical m), him, hm⟩ := zorn.zorn_partial_order₀ {K :
449455
(submodule.mem_Sup_of_directed ⟨y, hyc⟩ hcc.directed_on).1 hrnc in hc hyc ⟨n, hrny⟩,
450456
λ z, le_Sup⟩) I hri in
451457
have ∀ x ∉ m, r ∈ radical (m ⊔ span {x}) := λ x hxm, classical.by_contradiction $ λ hrmx, hxm $
452-
hm (m ⊔ span {x}) hrmx le_sup_left ▸ (le_sup_right : _ ≤ m ⊔ span {x}) (subset_span $ set.mem_singleton _),
458+
hm (m ⊔ span {x}) hrmx le_sup_left ▸ (le_sup_right : _ ≤ m ⊔ span {x})
459+
(subset_span $ set.mem_singleton _),
453460
have is_prime m, fromby rintro rfl; rw radical_top at hrm; exact hrm trivial,
454461
λ x y hxym, or_iff_not_imp_left.2 $ λ hxm, classical.by_contradiction $ λ hym,
455-
let ⟨n, hrn⟩ := this _ hxm, ⟨p, hpm, q, hq, hpqrn⟩ := submodule.mem_sup.1 hrn, ⟨c, hcxq⟩ := mem_span_singleton'.1 hq in
456-
let ⟨k, hrk⟩ := this _ hym, ⟨f, hfm, g, hg, hfgrk⟩ := submodule.mem_sup.1 hrk, ⟨d, hdyg⟩ := mem_span_singleton'.1 hg in
457-
hrm ⟨n + k, by rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c*x), mul_assoc c x (d*y), mul_left_comm x, ← mul_assoc];
458-
refine m.add_mem (m.mul_mem_right _ hpm) (m.add_mem (m.mul_mem_left _ hfm) (m.mul_mem_left _ hxym))⟩⟩,
462+
let ⟨n, hrn⟩ := this _ hxm,
463+
⟨p, hpm, q, hq, hpqrn⟩ := submodule.mem_sup.1 hrn,
464+
⟨c, hcxq⟩ := mem_span_singleton'.1 hq in
465+
let ⟨k, hrk⟩ := this _ hym,
466+
⟨f, hfm, g, hg, hfgrk⟩ := submodule.mem_sup.1 hrk,
467+
⟨d, hdyg⟩ := mem_span_singleton'.1 hg in
468+
hrm ⟨n + k, by rw [pow_add, ← hpqrn, ← hcxq, ← hfgrk, ← hdyg, add_mul, mul_add (c*x),
469+
mul_assoc c x (d*y), mul_left_comm x, ← mul_assoc];
470+
refine m.add_mem (m.mul_mem_right _ hpm) (m.add_mem (m.mul_mem_left _ hfm)
471+
(m.mul_mem_left _ hxym))⟩⟩,
459472
hrm $ this.radical.symm ▸ (Inf_le ⟨him, this⟩ : Inf {J : ideal R | I ≤ J ∧ is_prime J} ≤ m) hr
460473

461474
@[simp] lemma radical_bot_of_integral_domain {R : Type u} [integral_domain R] :
@@ -537,7 +550,8 @@ theorem subset_union {I J K : ideal R} : (I : set R) ⊆ J ∪ K ↔ I ≤ J ∨
537550
theorem subset_union_prime' {s : finset ι} {f : ι → ideal R} {a b : ι}
538551
(hp : ∀ i ∈ s, is_prime (f i)) {I : ideal R} :
539552
(I : set R) ⊆ f a ∪ f b ∪ (⋃ i ∈ (↑s : set ι), f i) ↔ I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i :=
540-
suffices (I : set R) ⊆ f a ∪ f b ∪ (⋃ i ∈ (↑s : set ι), f i) → I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i,
553+
suffices (I : set R) ⊆ f a ∪ f b ∪ (⋃ i ∈ (↑s : set ι), f i) →
554+
I ≤ f a ∨ I ≤ f b ∨ ∃ i ∈ s, I ≤ f i,
541555
fromthis, λ h, or.cases_on h (λ h, set.subset.trans h $ set.subset.trans
542556
(set.subset_union_left _ _) (set.subset_union_left _ _)) $
543557
λ h, or.cases_on h (λ h, set.subset.trans h $ set.subset.trans
@@ -553,7 +567,8 @@ begin
553567
rw [finset.coe_empty, set.bUnion_empty, set.union_empty, subset_union] at h,
554568
simpa only [exists_prop, finset.not_mem_empty, false_and, exists_false, or_false] },
555569
classical,
556-
replace hn : ∃ (i : ι) (t : finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n := finset.card_eq_succ.1 hn,
570+
replace hn : ∃ (i : ι) (t : finset ι), i ∉ t ∧ insert i t = s ∧ t.card = n :=
571+
finset.card_eq_succ.1 hn,
557572
unfreezingI { rcases hn with ⟨i, t, hit, rfl, hn⟩ },
558573
replace hp : is_prime (f i) ∧ ∀ x ∈ t, is_prime (f x) := (t.forall_mem_insert _ _).1 hp,
559574
by_cases Ht : ∃ j ∈ t, f j ≤ f i,
@@ -576,7 +591,8 @@ begin
576591
exact and.imp (λ hk, finset.insert_subset_insert i (finset.subset_insert j u) hk) id },
577592
by_cases Ha : f a ≤ f i,
578593
{ have h' : (I : set R) ⊆ f i ∪ f b ∪ (⋃ j ∈ (↑t : set ι), f j),
579-
{ rw [finset.coe_insert, set.bUnion_insert, ← set.union_assoc, set.union_right_comm ↑(f a)] at h,
594+
{ rw [finset.coe_insert, set.bUnion_insert, ← set.union_assoc,
595+
set.union_right_comm ↑(f a)] at h,
580596
erw [set.union_eq_self_of_subset_left Ha] at h,
581597
exact h },
582598
specialize @ih i b t hp.2 hn h', right,
@@ -873,7 +889,8 @@ lemma map_infi_comap_of_surjective (K : ι → ideal S) : (⨅i, (K i).comap f).
873889
theorem mem_image_of_mem_map_of_surjective {I : ideal R} {y}
874890
(H : y ∈ map f I) : y ∈ f '' I :=
875891
submodule.span_induction H (λ _, id) ⟨0, I.zero_mem, f.map_zero⟩
876-
(λ y1 y2 ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩, ⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ f.map_add _ _⟩)
892+
(λ y1 y2 ⟨x1, hx1i, hxy1⟩ ⟨x2, hx2i, hxy2⟩,
893+
⟨x1 + x2, I.add_mem hx1i hx2i, hxy1 ▸ hxy2 ▸ f.map_add _ _⟩)
877894
(λ c y ⟨x, hxi, hxy⟩, let ⟨d, hdc⟩ := hf c in ⟨d • x, I.smul_mem _ hxi, hdc ▸ hxy ▸ f.map_mul _ _⟩)
878895

879896
lemma mem_map_iff_of_surjective {I : ideal R} {y} :
@@ -1004,7 +1021,8 @@ I ≠ ⊤ ∧ ∀ {x y : R}, x * y ∈ I → x ∈ I ∨ y ∈ radical I
10041021
theorem is_primary.to_is_prime (I : ideal R) (hi : is_prime I) : is_primary I :=
10051022
⟨hi.1, λ x y hxy, (hi.mem_or_mem hxy).imp id $ λ hyi, le_radical hyi⟩
10061023

1007-
theorem mem_radical_of_pow_mem {I : ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) : x ∈ radical I :=
1024+
theorem mem_radical_of_pow_mem {I : ideal R} {x : R} {m : ℕ} (hx : x ^ m ∈ radical I) :
1025+
x ∈ radical I :=
10081026
radical_idem I ▸ ⟨m, hx⟩
10091027

10101028
theorem is_prime_radical {I : ideal R} (hi : is_primary I) : is_prime (radical I) :=
@@ -1275,11 +1293,12 @@ lemma quotient_ker_alg_equiv_of_right_inverse.apply {f : A →ₐ[R] B} {g : B
12751293
@[simp]
12761294
lemma quotient_ker_alg_equiv_of_right_inverse_symm.apply {f : A →ₐ[R] B} {g : B → A}
12771295
(hf : function.right_inverse g f) (x : B) :
1278-
(quotient_ker_alg_equiv_of_right_inverse hf).symm x = quotient.mkₐ R f.to_ring_hom.ker (g x) := rfl
1296+
(quotient_ker_alg_equiv_of_right_inverse hf).symm x = quotient.mkₐ R f.to_ring_hom.ker (g x) :=
1297+
rfl
12791298

12801299
/-- The first isomorphism theorem for agebras. -/
1281-
noncomputable def quotient_ker_alg_equiv_of_surjective {f : A →ₐ[R] B} (hf : function.surjective f) :
1282-
f.to_ring_hom.ker.quotient ≃ₐ[R] B :=
1300+
noncomputable def quotient_ker_alg_equiv_of_surjective
1301+
{f : A →ₐ[R] B} (hf : function.surjective f) : f.to_ring_hom.ker.quotient ≃ₐ[R] B :=
12831302
quotient_ker_alg_equiv_of_right_inverse (classical.some_spec hf.has_right_inverse)
12841303

12851304
/-- The ring hom `R/J →+* S/I` induced by a ring hom `f : R →+* S` with `J ≤ f⁻¹(I)` -/
@@ -1414,8 +1433,8 @@ noncomputable def lift_of_surjective
14141433
(f.lift_of_surjective hf g hg) (f a) = g a :=
14151434
f.to_add_monoid_hom.lift_of_surjective_comp_apply hf g.to_add_monoid_hom hg a
14161435

1417-
@[simp] lemma lift_of_surjective_comp (hf : function.surjective f) (g : A →+* C) (hg : f.ker ≤ g.ker) :
1418-
(f.lift_of_surjective hf g hg).comp f = g :=
1436+
@[simp] lemma lift_of_surjective_comp (hf : function.surjective f) (g : A →+* C)
1437+
(hg : f.ker ≤ g.ker) : (f.lift_of_surjective hf g hg).comp f = g :=
14191438
by { ext, simp only [comp_apply, lift_of_surjective_comp_apply] }
14201439

14211440
lemma eq_lift_of_surjective (hf : function.surjective f) (g : A →+* C) (hg : f.ker ≤ g.ker)

src/ring_theory/integral_closure.lean

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -116,12 +116,14 @@ variables [comm_ring R] [comm_ring A] [comm_ring B] [comm_ring S]
116116
variables [algebra R A] [algebra R B] (f : R →+* S)
117117

118118
theorem is_integral_alg_hom (f : A →ₐ[R] B) {x : A} (hx : is_integral R x) : is_integral R (f x) :=
119-
let ⟨p, hp, hpx⟩ := hx in ⟨p, hp, by rw [← aeval_def, aeval_alg_hom_apply, aeval_def, hpx, f.map_zero]⟩
119+
let ⟨p, hp, hpx⟩ :=
120+
hx in ⟨p, hp, by rw [← aeval_def, aeval_alg_hom_apply, aeval_def, hpx, f.map_zero]⟩
120121

121122
theorem is_integral_of_is_scalar_tower [algebra A B] [is_scalar_tower R A B]
122123
(x : B) (hx : is_integral R x) : is_integral A x :=
123124
let ⟨p, hp, hpx⟩ := hx in
124-
⟨p.map $ algebra_map R A, monic_map _ hp, by rw [← aeval_def, ← is_scalar_tower.aeval_apply, aeval_def, hpx]⟩
125+
⟨p.map $ algebra_map R A, monic_map _ hp,
126+
by rw [← aeval_def, ← is_scalar_tower.aeval_apply, aeval_def, hpx]⟩
125127

126128
section
127129
local attribute [instance] subset.comm_ring algebra.of_is_subring
@@ -206,7 +208,8 @@ begin
206208
refine is_integral_of_subring S₀ _,
207209
letI : comm_ring S₀ := @subtype.comm_ring _ _ _ ring.closure.is_subring,
208210
letI : algebra S₀ A := algebra.of_is_subring _,
209-
have : span S₀ (insert 1 ↑y : set A) * span S₀ (insert 1 ↑y : set A) ≤ span S₀ (insert 1 ↑y : set A),
211+
have :
212+
span S₀ (insert 1 ↑y : set A) * span S₀ (insert 1 ↑y : set A) ≤ span S₀ (insert 1 ↑y : set A),
210213
{ rw span_mul_span, refine span_le.2 (λ z hz, _),
211214
rcases set.mem_mul.1 hz with ⟨p, q, rfl | hp, hq, rfl⟩,
212215
{ rw one_mul, exact subset_span hq },
@@ -451,7 +454,8 @@ end
451454

452455
lemma ring_hom.is_integral_tower_bot_of_is_integral (hg : function.injective g)
453456
(hfg : (g.comp f).is_integral) : f.is_integral :=
454-
λ x, @is_integral_tower_bot_of_is_integral R S T _ _ _ g.to_algebra (g.comp f).to_algebra f.to_algebra
457+
λ x,
458+
@is_integral_tower_bot_of_is_integral R S T _ _ _ g.to_algebra (g.comp f).to_algebra f.to_algebra
455459
(@is_scalar_tower.of_algebra_map_eq R S T _ _ _ f.to_algebra g.to_algebra (g.comp f).to_algebra
456460
(ring_hom.comp_apply g f)) hg x (hfg (g x))
457461

@@ -560,7 +564,8 @@ variables {R S : Type*} [comm_ring R] [integral_domain S] [algebra R S]
560564
instance : integral_domain (integral_closure R S) :=
561565
{ exists_pair_ne := ⟨0, 1, mt subtype.ext_iff_val.mp zero_ne_one⟩,
562566
eq_zero_or_eq_zero_of_mul_eq_zero := λ ⟨a, ha⟩ ⟨b, hb⟩ h,
563-
or.imp subtype.ext_iff_val.mpr subtype.ext_iff_val.mpr (eq_zero_or_eq_zero_of_mul_eq_zero (subtype.ext_iff_val.mp h)),
567+
or.imp subtype.ext_iff_val.mpr subtype.ext_iff_val.mpr
568+
(eq_zero_or_eq_zero_of_mul_eq_zero (subtype.ext_iff_val.mp h)),
564569
..(integral_closure R S).comm_ring R S }
565570

566571
end integral_domain

0 commit comments

Comments
 (0)