Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 4024597

Browse files
committed
feat(category_theory/limits/presheaf): left adjoint if preserves colimits (#4896)
1 parent 6a1ce57 commit 4024597

File tree

1 file changed

+10
-0
lines changed

1 file changed

+10
-0
lines changed

src/category_theory/limits/presheaf.lean

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -308,4 +308,14 @@ def unique_extension_along_yoneda (L : (Cᵒᵖ ⥤ Type u₁) ⥤ ℰ) (hL : yo
308308
L ≅ extend_along_yoneda A :=
309309
nat_iso_of_nat_iso_on_representables _ _ (hL ≪≫ (is_extension_along_yoneda _).symm)
310310

311+
/--
312+
If `L` preserves colimits and `ℰ` has them, then it is a left adjoint. Note this is a (partial)
313+
converse to `left_adjoint_preserves_colimits`.
314+
-/
315+
def is_left_adjoint_of_preserves_colimits (L : (Cᵒᵖ ⥤ Type u₁) ⥤ ℰ) [preserves_colimits L] :
316+
is_left_adjoint L :=
317+
{ right := restricted_yoneda (yoneda ⋙ L),
318+
adj := (yoneda_adjunction _).of_nat_iso_left
319+
(unique_extension_along_yoneda _ L (iso.refl _)).symm }
320+
311321
end category_theory

0 commit comments

Comments
 (0)