@@ -3,7 +3,7 @@ Copyright (c) 2021 Martin Zinkevich. All rights reserved.
3
3
Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Martin Zinkevich
5
5
-/
6
- import measure_theory.integral.lebesgue
6
+ import measure_theory.integral.bochner
7
7
import probability.independence
8
8
9
9
/-!
@@ -30,19 +30,16 @@ noncomputable theory
30
30
open set measure_theory
31
31
open_locale ennreal
32
32
33
- variables {α : Type *}
33
+ variables {α : Type *} {mα : measurable_space α} {μ : measure α} {f g : α → ℝ≥ 0 ∞} {X Y : α → ℝ}
34
34
35
35
namespace probability_theory
36
36
37
- /-- This (roughly) proves that if a random variable `f` is independent of an event `T`,
38
- then if you restrict the random variable to `T`, then
39
- `E[f * indicator T c 0]=E[f] * E[indicator T c 0]`. It is useful for
40
- `lintegral_mul_eq_lintegral_mul_lintegral_of_independent_measurable_space`. -/
41
- lemma lintegral_mul_indicator_eq_lintegral_mul_lintegral_indicator
42
- {Mf : measurable_space α} [M : measurable_space α] {μ : measure α} (hMf : Mf ≤ M)
43
- (c : ℝ≥0 ∞) {T : set α} (h_meas_T : measurable_set T)
44
- (h_ind : indep_sets Mf.measurable_set' {T} μ)
45
- {f : α → ℝ≥0 ∞} (h_meas_f : @measurable α ℝ≥0 ∞ Mf _ f) :
37
+ /-- If a random variable `f` in `ℝ≥0∞` is independent of an event `T`, then if you restrict the
38
+ random variable to `T`, then `E[f * indicator T c 0]=E[f] * E[indicator T c 0]`. It is useful for
39
+ `lintegral_mul_eq_lintegral_mul_lintegral_of_independent_measurable_space`. -/
40
+ lemma lintegral_mul_indicator_eq_lintegral_mul_lintegral_indicator {Mf mα : measurable_space α}
41
+ {μ : measure α} (hMf : Mf ≤ mα) (c : ℝ≥0 ∞) {T : set α} (h_meas_T : measurable_set T)
42
+ (h_ind : indep_sets Mf.measurable_set' {T} μ) (h_meas_f : @measurable α ℝ≥0 ∞ Mf _ f) :
46
43
∫⁻ a, f a * T.indicator (λ _, c) a ∂μ = ∫⁻ a, f a ∂μ * ∫⁻ a, T.indicator (λ _, c) a ∂μ :=
47
44
begin
48
45
revert f,
@@ -73,15 +70,15 @@ begin
73
70
{ exact λ m n h_le a, ennreal.mul_le_mul (h_mono_f h_le a) le_rfl, }, },
74
71
end
75
72
76
- /-- This (roughly) proves that if `f` and `g` are independent random variables,
73
+ /-- If `f` and `g` are independent random variables with values in `ℝ≥0∞` ,
77
74
then `E[f * g] = E[f] * E[g]`. However, instead of directly using the independence
78
75
of the random variables, it uses the independence of measurable spaces for the
79
76
domains of `f` and `g`. This is similar to the sigma-algebra approach to
80
77
independence. See `lintegral_mul_eq_lintegral_mul_lintegral_of_independent_fn` for
81
78
a more common variant of the product of independent variables. -/
82
79
lemma lintegral_mul_eq_lintegral_mul_lintegral_of_independent_measurable_space
83
- {Mf Mg : measurable_space α} [M : measurable_space α] {μ : measure α}
84
- (hMf : Mf ≤ M ) (hMg : Mg ≤ M ) (h_ind : indep Mf Mg μ) {f g : α → ℝ≥ 0 ∞}
80
+ {Mf Mg mα : measurable_space α} {μ : measure α}
81
+ (hMf : Mf ≤ mα ) (hMg : Mg ≤ mα ) (h_ind : indep Mf Mg μ)
85
82
(h_meas_f : @measurable α ℝ≥0 ∞ Mf _ f) (h_meas_g : @measurable α ℝ≥0 ∞ Mg _ g) :
86
83
∫⁻ a, f a * g a ∂μ = ∫⁻ a, f a ∂μ * ∫⁻ a, g a ∂μ :=
87
84
begin
@@ -108,14 +105,134 @@ begin
108
105
{ exact λ n m (h_le : n ≤ m) a, ennreal.mul_le_mul le_rfl (h_mono_f' h_le a), }, }
109
106
end
110
107
111
- /-- This proves that if `f` and `g` are independent random variables,
108
+ /-- If `f` and `g` are independent random variables with values in `ℝ≥0∞` ,
112
109
then `E[f * g] = E[f] * E[g]`. -/
113
- lemma lintegral_mul_eq_lintegral_mul_lintegral_of_indep_fun [measurable_space α] {μ : measure α}
114
- {f g : α → ℝ≥0 ∞} (h_meas_f : measurable f) (h_meas_g : measurable g)
115
- (h_indep_fun : indep_fun f g μ) :
110
+ lemma lintegral_mul_eq_lintegral_mul_lintegral_of_indep_fun
111
+ (h_meas_f : measurable f) (h_meas_g : measurable g) (h_indep_fun : indep_fun f g μ) :
116
112
∫⁻ a, (f * g) a ∂μ = ∫⁻ a, f a ∂μ * ∫⁻ a, g a ∂μ :=
117
113
lintegral_mul_eq_lintegral_mul_lintegral_of_independent_measurable_space
118
114
(measurable_iff_comap_le.1 h_meas_f) (measurable_iff_comap_le.1 h_meas_g) h_indep_fun
119
115
(measurable.of_comap_le le_rfl) (measurable.of_comap_le le_rfl)
120
116
117
+ /-- If `f` and `g` with values in `ℝ≥0∞` are independent and almost everywhere measurable,
118
+ then `E[f * g] = E[f] * E[g]` (slightly generalizing
119
+ `lintegral_mul_eq_lintegral_mul_lintegral_of_indep_fun`). -/
120
+ lemma lintegral_mul_eq_lintegral_mul_lintegral_of_indep_fun'
121
+ (h_meas_f : ae_measurable f μ) (h_meas_g : ae_measurable g μ) (h_indep_fun : indep_fun f g μ) :
122
+ ∫⁻ a, (f * g) a ∂μ = ∫⁻ a, f a ∂μ * ∫⁻ a, g a ∂μ :=
123
+ begin
124
+ have fg_ae : f * g =ᵐ[μ] (h_meas_f.mk _) * (h_meas_g.mk _),
125
+ from h_meas_f.ae_eq_mk.mul h_meas_g.ae_eq_mk,
126
+ rw [lintegral_congr_ae h_meas_f.ae_eq_mk, lintegral_congr_ae h_meas_g.ae_eq_mk,
127
+ lintegral_congr_ae fg_ae],
128
+ apply lintegral_mul_eq_lintegral_mul_lintegral_of_indep_fun
129
+ h_meas_f.measurable_mk h_meas_g.measurable_mk,
130
+ exact h_indep_fun.ae_eq h_meas_f.ae_eq_mk h_meas_g.ae_eq_mk
131
+ end
132
+
133
+ /-- The product of two independent, integrable, real_valued random variables is integrable. -/
134
+ lemma indep_fun.integrable_mul {β : Type *} {mβ : measurable_space β} {X Y : α → β}
135
+ [normed_division_ring β] [borel_space β]
136
+ (hXY : indep_fun X Y μ) (hX : integrable X μ) (hY : integrable Y μ) :
137
+ integrable (X * Y) μ :=
138
+ begin
139
+ let nX : α → ennreal := λ a, ∥X a∥₊,
140
+ let nY : α → ennreal := λ a, ∥Y a∥₊,
141
+
142
+ have hXY' : indep_fun (λ a, ∥X a∥₊) (λ a, ∥Y a∥₊) μ :=
143
+ hXY.comp measurable_nnnorm measurable_nnnorm,
144
+ have hXY'' : indep_fun nX nY μ :=
145
+ hXY'.comp measurable_coe_nnreal_ennreal measurable_coe_nnreal_ennreal,
146
+
147
+ have hnX : ae_measurable nX μ := hX.1 .ae_measurable.nnnorm.coe_nnreal_ennreal,
148
+ have hnY : ae_measurable nY μ := hY.1 .ae_measurable.nnnorm.coe_nnreal_ennreal,
149
+
150
+ have hmul : ∫⁻ a, nX a * nY a ∂μ = ∫⁻ a, nX a ∂μ * ∫⁻ a, nY a ∂μ :=
151
+ by convert lintegral_mul_eq_lintegral_mul_lintegral_of_indep_fun' hnX hnY hXY'',
152
+
153
+ refine ⟨hX.1 .mul hY.1 , _⟩,
154
+ simp_rw [has_finite_integral, pi.mul_apply, nnnorm_mul, ennreal.coe_mul, hmul],
155
+ exact ennreal.mul_lt_top_iff.mpr (or.inl ⟨hX.2 , hY.2 ⟩)
156
+ end
157
+
158
+ /-- The (Bochner) integral of the product of two independent, nonnegative random
159
+ variables is the product of their integrals. The proof is just plumbing around
160
+ `lintegral_mul_eq_lintegral_mul_lintegral_of_indep_fun'`. -/
161
+ lemma indep_fun.integral_mul_of_nonneg (hXY : indep_fun X Y μ) (hXp : 0 ≤ X) (hYp : 0 ≤ Y)
162
+ (hXm : ae_measurable X μ) (hYm : ae_measurable Y μ) :
163
+ integral μ (X * Y) = integral μ X * integral μ Y :=
164
+ begin
165
+ have h1 : ae_measurable (λ a, ennreal.of_real (X a)) μ :=
166
+ ennreal.measurable_of_real.comp_ae_measurable hXm,
167
+ have h2 : ae_measurable (λ a, ennreal.of_real (Y a)) μ :=
168
+ ennreal.measurable_of_real.comp_ae_measurable hYm,
169
+ have h3 : ae_measurable (X * Y) μ := hXm.mul hYm,
170
+
171
+ have h4 : 0 ≤ᵐ[μ] (X * Y) := ae_of_all _ (λ ω, mul_nonneg (hXp ω) (hYp ω)),
172
+
173
+ rw [integral_eq_lintegral_of_nonneg_ae (ae_of_all _ hXp) hXm.ae_strongly_measurable,
174
+ integral_eq_lintegral_of_nonneg_ae (ae_of_all _ hYp) hYm.ae_strongly_measurable,
175
+ integral_eq_lintegral_of_nonneg_ae h4 h3.ae_strongly_measurable],
176
+ simp_rw [←ennreal.to_real_mul, pi.mul_apply, ennreal.of_real_mul (hXp _)],
177
+ congr,
178
+ apply lintegral_mul_eq_lintegral_mul_lintegral_of_indep_fun' h1 h2,
179
+ exact hXY.comp ennreal.measurable_of_real ennreal.measurable_of_real
180
+ end
181
+
182
+ /-- The (Bochner) integral of the product of two independent, integrable random
183
+ variables is the product of their integrals. The proof is pedestrian decomposition
184
+ into their positive and negative parts in order to apply `indep_fun.integral_mul_of_nonneg`
185
+ four times. -/
186
+ theorem indep_fun.integral_mul_of_integrable (hXY : indep_fun X Y μ)
187
+ (hX : integrable X μ) (hY : integrable Y μ) :
188
+ integral μ (X * Y) = integral μ X * integral μ Y :=
189
+ begin
190
+ let pos : ℝ → ℝ := (λ x, max x 0 ),
191
+ let neg : ℝ → ℝ := (λ x, max (-x) 0 ),
192
+ have posm : measurable pos := measurable_id'.max measurable_const,
193
+ have negm : measurable neg := measurable_id'.neg.max measurable_const,
194
+
195
+ let Xp := pos ∘ X, -- `X⁺` would look better but it makes `simp_rw` below fail
196
+ let Xm := neg ∘ X,
197
+ let Yp := pos ∘ Y,
198
+ let Ym := neg ∘ Y,
199
+
200
+ have hXpm : X = Xp - Xm := funext (λ ω, (max_zero_sub_max_neg_zero_eq_self (X ω)).symm),
201
+ have hYpm : Y = Yp - Ym := funext (λ ω, (max_zero_sub_max_neg_zero_eq_self (Y ω)).symm),
202
+
203
+ have hp1 : 0 ≤ Xm := λ ω, le_max_right _ _,
204
+ have hp2 : 0 ≤ Xp := λ ω, le_max_right _ _,
205
+ have hp3 : 0 ≤ Ym := λ ω, le_max_right _ _,
206
+ have hp4 : 0 ≤ Yp := λ ω, le_max_right _ _,
207
+
208
+ have hm1 : ae_measurable Xm μ := hX.1 .ae_measurable.neg.max ae_measurable_const,
209
+ have hm2 : ae_measurable Xp μ := hX.1 .ae_measurable.max ae_measurable_const,
210
+ have hm3 : ae_measurable Ym μ := hY.1 .ae_measurable.neg.max ae_measurable_const,
211
+ have hm4 : ae_measurable Yp μ := hY.1 .ae_measurable.max ae_measurable_const,
212
+
213
+ have hv1 : integrable Xm μ := hX.neg.max_zero,
214
+ have hv2 : integrable Xp μ := hX.max_zero,
215
+ have hv3 : integrable Ym μ := hY.neg.max_zero,
216
+ have hv4 : integrable Yp μ := hY.max_zero,
217
+
218
+ have hi1 : indep_fun Xm Ym μ := hXY.comp negm negm,
219
+ have hi2 : indep_fun Xp Ym μ := hXY.comp posm negm,
220
+ have hi3 : indep_fun Xm Yp μ := hXY.comp negm posm,
221
+ have hi4 : indep_fun Xp Yp μ := hXY.comp posm posm,
222
+
223
+ have hl1 : integrable (Xm * Ym) μ := hi1.integrable_mul hv1 hv3,
224
+ have hl2 : integrable (Xp * Ym) μ := hi2.integrable_mul hv2 hv3,
225
+ have hl3 : integrable (Xm * Yp) μ := hi3.integrable_mul hv1 hv4,
226
+ have hl4 : integrable (Xp * Yp) μ := hi4.integrable_mul hv2 hv4,
227
+ have hl5 : integrable (Xp * Yp - Xm * Yp) μ := hl4.sub hl3,
228
+ have hl6 : integrable (Xp * Ym - Xm * Ym) μ := hl2.sub hl1,
229
+
230
+ simp_rw [hXpm, hYpm, mul_sub, sub_mul],
231
+ rw [integral_sub' hl5 hl6, integral_sub' hl4 hl3, integral_sub' hl2 hl1,
232
+ integral_sub' hv2 hv1, integral_sub' hv4 hv3, hi1.integral_mul_of_nonneg hp1 hp3 hm1 hm3,
233
+ hi2.integral_mul_of_nonneg hp2 hp3 hm2 hm3, hi3.integral_mul_of_nonneg hp1 hp4 hm1 hm4,
234
+ hi4.integral_mul_of_nonneg hp2 hp4 hm2 hm4],
235
+ ring
236
+ end
237
+
121
238
end probability_theory
0 commit comments