Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 41626f7

Browse files
committed
feat(data/polynomial/degree/definitions): add degree_X_sub_C_le (#16404)
1 parent 63014d2 commit 41626f7

File tree

2 files changed

+5
-4
lines changed

2 files changed

+5
-4
lines changed

src/data/polynomial/algebra_map.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -375,7 +375,7 @@ begin
375375
have bound := calc
376376
(p * (X - C r)).nat_degree
377377
≤ p.nat_degree + (X - C r).nat_degree : nat_degree_mul_le
378-
... ≤ p.nat_degree + 1 : add_le_add_left nat_degree_X_sub_C_le _
378+
... ≤ p.nat_degree + 1 : add_le_add_left (nat_degree_X_sub_C_le _) _
379379
... < p.nat_degree + 2 : lt_add_one _,
380380
rw sum_over_range' _ _ (p.nat_degree + 2) bound,
381381
swap,

src/data/polynomial/degree/definitions.lean

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1047,10 +1047,11 @@ calc degree (p - q) = degree (erase (nat_degree q) p + -erase (nat_degree q) q)
10471047
: degree_neg (erase (nat_degree q) q) ▸ degree_add_le _ _
10481048
... < degree p : max_lt_iff.2 ⟨hd' ▸ degree_erase_lt hp0, hd.symm ▸ degree_erase_lt hq0⟩
10491049

1050+
lemma degree_X_sub_C_le (r : R) : (X - C r).degree ≤ 1 :=
1051+
(degree_sub_le _ _).trans (max_le degree_X_le (degree_C_le.trans zero_le_one))
10501052

1051-
lemma nat_degree_X_sub_C_le {r : R} : (X - C r).nat_degree ≤ 1 :=
1052-
nat_degree_le_iff_degree_le.2 $ le_trans (degree_sub_le _ _) $ max_le degree_X_le $
1053-
le_trans degree_C_le $ with_bot.coe_le_coe.2 zero_le_one
1053+
lemma nat_degree_X_sub_C_le (r : R) : (X - C r).nat_degree ≤ 1 :=
1054+
nat_degree_le_iff_degree_le.2 $ degree_X_sub_C_le r
10541055

10551056
lemma degree_sub_eq_left_of_degree_lt (h : degree q < degree p) : degree (p - q) = degree p :=
10561057
by { rw ← degree_neg q at h, rw [sub_eq_add_neg, degree_add_eq_left_of_degree_lt h] }

0 commit comments

Comments
 (0)