|
| 1 | +/- |
| 2 | +Copyright (c) 2020 Bhavik Mehta. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Bhavik Mehta |
| 5 | +-/ |
| 6 | +import category_theory.limits.shapes.equalizers |
| 7 | +import category_theory.limits.preserves.basic |
| 8 | + |
| 9 | +/-! |
| 10 | +# Preserving equalizers |
| 11 | +
|
| 12 | +Constructions to relate the notions of preserving equalizers and reflecting equalizers |
| 13 | +to concrete forks. |
| 14 | +
|
| 15 | +In particular, we show that `equalizer_comparison G f` is an isomorphism iff `G` preserves |
| 16 | +the limit of `f`. |
| 17 | +-/ |
| 18 | + |
| 19 | +noncomputable theory |
| 20 | + |
| 21 | +universes v u₁ u₂ |
| 22 | + |
| 23 | +open category_theory category_theory.category category_theory.limits |
| 24 | + |
| 25 | +variables {C : Type u₁} [category.{v} C] |
| 26 | +variables {D : Type u₂} [category.{v} D] |
| 27 | +variables (G : C ⥤ D) |
| 28 | + |
| 29 | +namespace category_theory.limits |
| 30 | + |
| 31 | +variables {X Y Z : C} {f g : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = h ≫ g) |
| 32 | + |
| 33 | +/-- |
| 34 | +The map of a fork is a limit iff the fork consisting of the mapped morphisms is a limit. This |
| 35 | +essentially lets us commute `fork.of_ι` with `functor.map_cone`. |
| 36 | +-/ |
| 37 | +def is_limit_map_cone_fork_equiv : |
| 38 | + is_limit (G.map_cone (fork.of_ι h w)) ≃ |
| 39 | + is_limit (fork.of_ι (G.map h) (by simp only [←G.map_comp, w]) : fork (G.map f) (G.map g)) := |
| 40 | +(is_limit.postcompose_hom_equiv (diagram_iso_parallel_pair _) _).symm.trans |
| 41 | + (is_limit.equiv_iso_limit (fork.ext (iso.refl _) (by simp [fork.ι_eq_app_zero]))) |
| 42 | + |
| 43 | +/-- The property of preserving equalizers expressed in terms of forks. -/ |
| 44 | +def is_limit_fork_map_of_is_limit [preserves_limit (parallel_pair f g) G] |
| 45 | + (l : is_limit (fork.of_ι h w)) : |
| 46 | + is_limit (fork.of_ι (G.map h) (by simp only [←G.map_comp, w]) : fork (G.map f) (G.map g)) := |
| 47 | +is_limit_map_cone_fork_equiv G w (preserves_limit.preserves l) |
| 48 | + |
| 49 | +/-- The property of reflecting equalizers expressed in terms of forks. -/ |
| 50 | +def is_limit_of_is_limit_fork_map [reflects_limit (parallel_pair f g) G] |
| 51 | + (l : is_limit (fork.of_ι (G.map h) (by simp only [←G.map_comp, w]) : fork (G.map f) (G.map g))) : |
| 52 | + is_limit (fork.of_ι h w) := |
| 53 | +reflects_limit.reflects ((is_limit_map_cone_fork_equiv G w).symm l) |
| 54 | + |
| 55 | +variables (f g) [has_equalizer f g] |
| 56 | + |
| 57 | +/-- |
| 58 | +If `G` preserves equalizers and `C` has them, then the fork constructed of the mapped morphisms of |
| 59 | +a fork is a limit. |
| 60 | +-/ |
| 61 | +def is_limit_of_has_equalizer_of_preserves_limit |
| 62 | + [preserves_limit (parallel_pair f g) G] : |
| 63 | + is_limit (fork.of_ι (G.map (equalizer.ι f g)) |
| 64 | + (by simp only [←G.map_comp, equalizer.condition])) := |
| 65 | +is_limit_fork_map_of_is_limit G _ (equalizer_is_equalizer f g) |
| 66 | + |
| 67 | +variables [has_equalizer (G.map f) (G.map g)] |
| 68 | + |
| 69 | +/-- |
| 70 | +If the equalizer comparison map for `G` at `(f,g)` is an isomorphism, then `G` preserves the |
| 71 | +equalizer of `(f,g)`. |
| 72 | +-/ |
| 73 | +def preserves_equalizer.of_iso_comparison [i : is_iso (equalizer_comparison f g G)] : |
| 74 | + preserves_limit (parallel_pair f g) G := |
| 75 | +begin |
| 76 | + apply preserves_limit_of_preserves_limit_cone (equalizer_is_equalizer f g), |
| 77 | + apply (is_limit_map_cone_fork_equiv _ _).symm _, |
| 78 | + apply is_limit.of_point_iso (limit.is_limit (parallel_pair (G.map f) (G.map g))), |
| 79 | + apply i, |
| 80 | +end |
| 81 | + |
| 82 | +variables [preserves_limit (parallel_pair f g) G] |
| 83 | + |
| 84 | +/-- |
| 85 | +If `G` preserves the equalizer of `(f,g)`, then the equalizer comparison map for `G` at `(f,g)` is |
| 86 | +an isomorphism. |
| 87 | +-/ |
| 88 | +def preserves_equalizer.iso : |
| 89 | + G.obj (equalizer f g) ≅ equalizer (G.map f) (G.map g) := |
| 90 | +is_limit.cone_point_unique_up_to_iso |
| 91 | + (is_limit_of_has_equalizer_of_preserves_limit G f g) |
| 92 | + (limit.is_limit _) |
| 93 | + |
| 94 | +@[simp] |
| 95 | +lemma preserves_equalizer.iso_hom : |
| 96 | + (preserves_equalizer.iso G f g).hom = equalizer_comparison f g G := |
| 97 | +rfl |
| 98 | + |
| 99 | +instance : is_iso (equalizer_comparison f g G) := |
| 100 | +begin |
| 101 | + rw ← preserves_equalizer.iso_hom, |
| 102 | + apply_instance |
| 103 | +end |
| 104 | + |
| 105 | +end category_theory.limits |
0 commit comments