@@ -71,40 +71,40 @@ variables (𝕂 𝔸 : Type*) [field 𝕂] [ring 𝔸] [algebra 𝕂 𝔸] [topo
71
71
/-- `exp_series 𝕂 𝔸` is the `formal_multilinear_series` whose `n`-th term is the map
72
72
`(xᵢ) : 𝔸ⁿ ↦ (1/n! : 𝕂) • ∏ xᵢ`. Its sum is the exponential map `exp 𝕂 𝔸 : 𝔸 → 𝔸`. -/
73
73
def exp_series : formal_multilinear_series 𝕂 𝔸 𝔸 :=
74
- λ n, (1 /n! : 𝕂) • continuous_multilinear_map.mk_pi_algebra_fin 𝕂 n 𝔸
74
+ λ n, (n!⁻¹ : 𝕂) • continuous_multilinear_map.mk_pi_algebra_fin 𝕂 n 𝔸
75
75
76
76
/-- `exp 𝕂 𝔸 : 𝔸 → 𝔸` is the exponential map determined by the action of `𝕂` on `𝔸`.
77
77
It is defined as the sum of the `formal_multilinear_series` `exp_series 𝕂 𝔸`. -/
78
78
noncomputable def exp (x : 𝔸) : 𝔸 := (exp_series 𝕂 𝔸).sum x
79
79
80
80
variables {𝕂 𝔸}
81
81
82
- lemma exp_series_apply_eq (x : 𝔸) (n : ℕ) : exp_series 𝕂 𝔸 n (λ _, x) = (1 / n! : 𝕂) • x^n :=
82
+ lemma exp_series_apply_eq (x : 𝔸) (n : ℕ) : exp_series 𝕂 𝔸 n (λ _, x) = (n!⁻¹ : 𝕂) • x^n :=
83
83
by simp [exp_series]
84
84
85
85
lemma exp_series_apply_eq' (x : 𝔸) :
86
- (λ n, exp_series 𝕂 𝔸 n (λ _, x)) = (λ n, (1 / n! : 𝕂) • x^n) :=
86
+ (λ n, exp_series 𝕂 𝔸 n (λ _, x)) = (λ n, (n!⁻¹ : 𝕂) • x^n) :=
87
87
funext (exp_series_apply_eq x)
88
88
89
89
lemma exp_series_apply_eq_field [topological_space 𝕂] [topological_ring 𝕂] (x : 𝕂) (n : ℕ) :
90
90
exp_series 𝕂 𝕂 n (λ _, x) = x^n / n! :=
91
91
begin
92
- rw [div_eq_inv_mul, ←smul_eq_mul, inv_eq_one_div ],
92
+ rw [div_eq_inv_mul, ←smul_eq_mul],
93
93
exact exp_series_apply_eq x n,
94
94
end
95
95
96
96
lemma exp_series_apply_eq_field' [topological_space 𝕂] [topological_ring 𝕂] (x : 𝕂) :
97
97
(λ n, exp_series 𝕂 𝕂 n (λ _, x)) = (λ n, x^n / n!) :=
98
98
funext (exp_series_apply_eq_field x)
99
99
100
- lemma exp_series_sum_eq (x : 𝔸) : (exp_series 𝕂 𝔸).sum x = ∑' (n : ℕ), (1 / n! : 𝕂) • x^n :=
100
+ lemma exp_series_sum_eq (x : 𝔸) : (exp_series 𝕂 𝔸).sum x = ∑' (n : ℕ), (n!⁻¹ : 𝕂) • x^n :=
101
101
tsum_congr (λ n, exp_series_apply_eq x n)
102
102
103
103
lemma exp_series_sum_eq_field [topological_space 𝕂] [topological_ring 𝕂] (x : 𝕂) :
104
104
(exp_series 𝕂 𝕂).sum x = ∑' (n : ℕ), x^n / n! :=
105
105
tsum_congr (λ n, exp_series_apply_eq_field x n)
106
106
107
- lemma exp_eq_tsum : exp 𝕂 𝔸 = (λ x : 𝔸, ∑' (n : ℕ), (1 / n! : 𝕂) • x^n) :=
107
+ lemma exp_eq_tsum : exp 𝕂 𝔸 = (λ x : 𝔸, ∑' (n : ℕ), (n!⁻¹ : 𝕂) • x^n) :=
108
108
funext exp_series_sum_eq
109
109
110
110
lemma exp_eq_tsum_field [topological_space 𝕂] [topological_ring 𝕂] :
@@ -113,7 +113,7 @@ funext exp_series_sum_eq_field
113
113
114
114
@[simp] lemma exp_zero [t2_space 𝔸] : exp 𝕂 𝔸 0 = 1 :=
115
115
begin
116
- suffices : (λ x : 𝔸, ∑' (n : ℕ), (1 / n! : 𝕂) • x^n) 0 = ∑' (n : ℕ), if n = 0 then 1 else 0 ,
116
+ suffices : (λ x : 𝔸, ∑' (n : ℕ), (n!⁻¹ : 𝕂) • x^n) 0 = ∑' (n : ℕ), if n = 0 then 1 else 0 ,
117
117
{ have key : ∀ n ∉ ({0 } : finset ℕ), (if n = 0 then (1 : 𝔸) else 0 ) = 0 ,
118
118
from λ n hn, if_neg (finset.not_mem_singleton.mp hn),
119
119
rw [exp_eq_tsum, this , tsum_eq_sum key, finset.sum_singleton],
@@ -153,7 +153,7 @@ lemma norm_exp_series_summable_of_mem_ball (x : 𝔸)
153
153
154
154
lemma norm_exp_series_summable_of_mem_ball' (x : 𝔸)
155
155
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
156
- summable (λ n, ∥(1 / n! : 𝕂) • x^n∥) :=
156
+ summable (λ n, ∥(n!⁻¹ : 𝕂) • x^n∥) :=
157
157
begin
158
158
change summable (norm ∘ _),
159
159
rw ← exp_series_apply_eq',
@@ -180,7 +180,7 @@ summable_of_summable_norm (norm_exp_series_summable_of_mem_ball x hx)
180
180
181
181
lemma exp_series_summable_of_mem_ball' (x : 𝔸)
182
182
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
183
- summable (λ n, (1 / n! : 𝕂) • x^n) :=
183
+ summable (λ n, (n!⁻¹ : 𝕂) • x^n) :=
184
184
summable_of_summable_norm (norm_exp_series_summable_of_mem_ball' x hx)
185
185
186
186
lemma exp_series_field_summable_of_mem_ball [complete_space 𝕂] (x : 𝕂)
@@ -194,7 +194,7 @@ formal_multilinear_series.has_sum (exp_series 𝕂 𝔸) hx
194
194
195
195
lemma exp_series_has_sum_exp_of_mem_ball' (x : 𝔸)
196
196
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
197
- has_sum (λ n, (1 / n! : 𝕂) • x^n) (exp 𝕂 𝔸 x):=
197
+ has_sum (λ n, (n!⁻¹ : 𝕂) • x^n) (exp 𝕂 𝔸 x):=
198
198
begin
199
199
rw ← exp_series_apply_eq',
200
200
exact exp_series_has_sum_exp_of_mem_ball x hx
@@ -339,8 +339,8 @@ begin
339
339
refine (exp_series 𝕂 𝔸).radius_eq_top_of_summable_norm (λ r, _),
340
340
refine summable_of_norm_bounded_eventually _ (real.summable_pow_div_factorial r) _,
341
341
filter_upwards [eventually_cofinite_ne 0 ] with n hn,
342
- rw [norm_mul, norm_norm (exp_series 𝕂 𝔸 n), exp_series, norm_smul, norm_div, norm_one , norm_pow,
343
- nnreal.norm_eq, norm_eq_abs, abs_cast_nat, mul_comm, ←mul_assoc, ←mul_div_assoc, mul_one ],
342
+ rw [norm_mul, norm_norm (exp_series 𝕂 𝔸 n), exp_series, norm_smul, norm_inv , norm_pow,
343
+ nnreal.norm_eq, norm_eq_abs, abs_cast_nat, mul_comm, ←mul_assoc, ←div_eq_mul_inv ],
344
344
have : ∥continuous_multilinear_map.mk_pi_algebra_fin 𝕂 n 𝔸∥ ≤ 1 :=
345
345
norm_mk_pi_algebra_fin_le_of_pos (nat.pos_of_ne_zero hn),
346
346
exact mul_le_of_le_one_right (div_nonneg (pow_nonneg r.coe_nonneg n) n!.cast_nonneg) this
@@ -359,7 +359,7 @@ section complete_algebra
359
359
lemma norm_exp_series_summable (x : 𝔸) : summable (λ n, ∥exp_series 𝕂 𝔸 n (λ _, x)∥) :=
360
360
norm_exp_series_summable_of_mem_ball x ((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
361
361
362
- lemma norm_exp_series_summable' (x : 𝔸) : summable (λ n, ∥(1 / n! : 𝕂) • x^n∥) :=
362
+ lemma norm_exp_series_summable' (x : 𝔸) : summable (λ n, ∥(n!⁻¹ : 𝕂) • x^n∥) :=
363
363
norm_exp_series_summable_of_mem_ball' x ((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
364
364
365
365
lemma norm_exp_series_field_summable (x : 𝕂) : summable (λ n, ∥x^n / n!∥) :=
@@ -371,7 +371,7 @@ variables [complete_space 𝔸]
371
371
lemma exp_series_summable (x : 𝔸) : summable (λ n, exp_series 𝕂 𝔸 n (λ _, x)) :=
372
372
summable_of_summable_norm (norm_exp_series_summable x)
373
373
374
- lemma exp_series_summable' (x : 𝔸) : summable (λ n, (1 / n! : 𝕂) • x^n) :=
374
+ lemma exp_series_summable' (x : 𝔸) : summable (λ n, (n!⁻¹ : 𝕂) • x^n) :=
375
375
summable_of_summable_norm (norm_exp_series_summable' x)
376
376
377
377
lemma exp_series_field_summable (x : 𝕂) : summable (λ n, x^n / n!) :=
@@ -380,7 +380,7 @@ summable_of_summable_norm (norm_exp_series_field_summable x)
380
380
lemma exp_series_has_sum_exp (x : 𝔸) : has_sum (λ n, exp_series 𝕂 𝔸 n (λ _, x)) (exp 𝕂 𝔸 x) :=
381
381
exp_series_has_sum_exp_of_mem_ball x ((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
382
382
383
- lemma exp_series_has_sum_exp' (x : 𝔸) : has_sum (λ n, (1 / n! : 𝕂) • x^n) (exp 𝕂 𝔸 x):=
383
+ lemma exp_series_has_sum_exp' (x : 𝔸) : has_sum (λ n, (n!⁻¹ : 𝕂) • x^n) (exp 𝕂 𝔸 x):=
384
384
exp_series_has_sum_exp_of_mem_ball' x ((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
385
385
386
386
lemma exp_series_field_has_sum_exp (x : 𝕂) : has_sum (λ n, x^n / n!) (exp 𝕂 𝕂 x):=
@@ -582,10 +582,7 @@ variables (𝕂 𝕂' 𝔸 : Type*) [field 𝕂] [field 𝕂'] [ring 𝔸] [alge
582
582
`exp_series` on `𝔸`. -/
583
583
lemma exp_series_eq_exp_series (n : ℕ) (x : 𝔸) :
584
584
(exp_series 𝕂 𝔸 n (λ _, x)) = (exp_series 𝕂' 𝔸 n (λ _, x)) :=
585
- by rw [exp_series, exp_series,
586
- smul_apply, mk_pi_algebra_fin_apply, list.of_fn_const, list.prod_repeat,
587
- smul_apply, mk_pi_algebra_fin_apply, list.of_fn_const, list.prod_repeat,
588
- one_div, one_div, inv_nat_cast_smul_eq 𝕂 𝕂']
585
+ by rw [exp_series_apply_eq, exp_series_apply_eq, inv_nat_cast_smul_eq 𝕂 𝕂']
589
586
590
587
/-- If a normed ring `𝔸` is a normed algebra over two fields, then they define the same
591
588
exponential function on `𝔸`. -/
0 commit comments