@@ -127,9 +127,9 @@ lemma continuous_cos : continuous cos :=
127
127
differentiable_cos.continuous
128
128
129
129
lemma continuous_tan : continuous (λ x : {x // cos x ≠ 0 }, tan x) :=
130
- continuous_mul
130
+ continuous.mul
131
131
(continuous_sin.comp continuous_subtype_val)
132
- (continuous_inv subtype.property
132
+ (continuous.inv subtype.property
133
133
(continuous_cos.comp continuous_subtype_val))
134
134
135
135
/-- The complex hyperbolic sine function is everywhere differentiable, with the derivative `sinh x`. -/
@@ -216,9 +216,8 @@ differentiable_cos.continuous
216
216
217
217
lemma continuous_tan : continuous (λ x : {x // cos x ≠ 0 }, tan x) :=
218
218
by simp only [tan_eq_sin_div_cos]; exact
219
- continuous_mul
220
- (continuous_sin.comp continuous_subtype_val)
221
- (continuous_inv subtype.property
219
+ (continuous_sin.comp continuous_subtype_val).mul
220
+ (continuous.inv subtype.property
222
221
(continuous_cos.comp continuous_subtype_val))
223
222
224
223
lemma has_deriv_at_sinh (x : ℝ) : has_deriv_at sinh (cosh x) x :=
@@ -348,9 +347,9 @@ begin
348
347
have : f₁ = λ h:{h:ℝ // 0 < h}, log x.1 + log h.1 ,
349
348
ext h, rw ← log_mul x.2 h.2 ,
350
349
simp only [this , log_mul x.2 zero_lt_one, log_one], exact
351
- tendsto_add tendsto_const_nhds (tendsto.comp tendsto_log_one_zero continuous_at_subtype_val),
350
+ tendsto.add tendsto_const_nhds (tendsto.comp tendsto_log_one_zero continuous_at_subtype_val),
352
351
have H2 : tendsto f₂ (𝓝 x) (𝓝 ⟨x.1 ⁻¹ * x.1 , mul_pos (inv_pos x.2 ) x.2 ⟩),
353
- rw tendsto_subtype_rng, exact tendsto_mul tendsto_const_nhds continuous_at_subtype_val,
352
+ rw tendsto_subtype_rng, exact tendsto.mul tendsto_const_nhds continuous_at_subtype_val,
354
353
suffices h : tendsto (f₁ ∘ f₂) (𝓝 x) (𝓝 (log x.1 )),
355
354
begin
356
355
convert h, ext y,
@@ -1701,22 +1700,22 @@ section prove_rpow_is_continuous
1701
1700
lemma continuous_rpow_aux1 : continuous (λp : {p:ℝ×ℝ // 0 < p.1 }, p.val.1 ^ p.val.2 ) :=
1702
1701
suffices h : continuous (λ p : {p:ℝ×ℝ // 0 < p.1 }, exp (log p.val.1 * p.val.2 )),
1703
1702
by { convert h, ext p, rw rpow_def_of_pos p.2 },
1704
- continuous_exp.comp $ continuous_mul
1703
+ continuous_exp.comp $ continuous.mul
1705
1704
(show continuous ((λp:{p:ℝ//0 < p}, log (p.val)) ∘ (λp:{p:ℝ×ℝ//0 <p.fst}, ⟨p.val.1 , p.2 ⟩)), from
1706
1705
continuous_log'.comp $ continuous_subtype_mk _ $ continuous_fst.comp continuous_subtype_val)
1707
1706
(continuous_snd.comp $ continuous_subtype_val.comp continuous_id)
1708
1707
1709
1708
lemma continuous_rpow_aux2 : continuous (λ p : {p:ℝ×ℝ // p.1 < 0 }, p.val.1 ^ p.val.2 ) :=
1710
1709
suffices h : continuous (λp:{p:ℝ×ℝ // p.1 < 0 }, exp (log (-p.val.1 ) * p.val.2 ) * cos (p.val.2 * π)),
1711
1710
by { convert h, ext p, rw [rpow_def_of_neg p.2 ] },
1712
- continuous_mul
1713
- (continuous_exp.comp $ continuous_mul
1711
+ continuous.mul
1712
+ (continuous_exp.comp $ continuous.mul
1714
1713
(show continuous $ (λp:{p:ℝ//0 <p},
1715
1714
log (p.val))∘(λp:{p:ℝ×ℝ//p.1 <0 }, ⟨-p.val.1 , neg_pos_of_neg p.2 ⟩),
1716
- from continuous_log'.comp $ continuous_subtype_mk _ $ continuous_neg' .comp $
1715
+ from continuous_log'.comp $ continuous_subtype_mk _ $ continuous_neg.comp $
1717
1716
continuous_fst.comp continuous_subtype_val)
1718
1717
(continuous_snd.comp $ continuous_subtype_val.comp continuous_id))
1719
- (continuous_cos.comp $ continuous_mul
1718
+ (continuous_cos.comp $ continuous.mul
1720
1719
(continuous_snd.comp $ continuous_subtype_val.comp continuous_id) continuous_const)
1721
1720
1722
1721
lemma continuous_at_rpow_of_ne_zero (hx : x ≠ 0 ) (y : ℝ) :
0 commit comments