Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 431551a

Browse files
sgouezelmergify[bot]
authored andcommitted
refactor(topology/algebra): use the dot notation in continuous_mul and friends (#1758)
* continuous_add * fixes * more fixes * fix * tendsto_add * fix tendsto * last fix
1 parent a350f03 commit 431551a

40 files changed

+228
-230
lines changed

src/analysis/calculus/fderiv.lean

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -160,7 +160,7 @@ begin
160160
{ conv in (nhds_within x s) { rw ← add_zero x },
161161
rw [← tendsto_iff_comap, nhds_within, tendsto_inf],
162162
split,
163-
{ apply tendsto_add tendsto_const_nhds (tangent_cone_at.lim_zero clim cdlim) },
163+
{ apply tendsto.add tendsto_const_nhds (tangent_cone_at.lim_zero clim cdlim) },
164164
{ rwa tendsto_principal } },
165165
have : is_o (λ y, f y - f x - f' (y - x)) (λ y, y - x) (nhds_within x s) := h,
166166
have : is_o (λ n:ℕ, f (x + d n) - f x - f' ((x + d n) - x)) (λ n, (x + d n) - x)
@@ -179,7 +179,7 @@ begin
179179
tendsto.comp f'.cont.continuous_at cdlim,
180180
have L3 : tendsto (λn:ℕ, (c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)))
181181
at_top (𝓝 (0 + f' v)) :=
182-
tendsto_add L1 L2,
182+
tendsto.add L1 L2,
183183
have : (λn:ℕ, (c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)))
184184
= (λn: ℕ, c n • (f (x + d n) - f x)),
185185
by { ext n, simp [smul_add] },
@@ -249,7 +249,7 @@ begin
249249
have : 𝓝 0 ≤ comap (λ (z : E), z + x) (𝓝 (0 + x)),
250250
{ refine tendsto_iff_comap.mp _,
251251
apply continuous.tendsto,
252-
exact continuous_add continuous_id continuous_const },
252+
exact continuous.add continuous_id continuous_const },
253253
apply is_o.mono this,
254254
convert is_o.comp H (λz, z + x),
255255
{ ext h, simp },
@@ -259,7 +259,7 @@ begin
259259
have : 𝓝 x ≤ comap (λ (z : E), z - x) (𝓝 (x - x)),
260260
{ refine tendsto_iff_comap.mp _,
261261
apply continuous.tendsto,
262-
exact continuous_add continuous_id continuous_const },
262+
exact continuous.add continuous_id continuous_const },
263263
apply is_o.mono this,
264264
convert is_o.comp H (λz, z - x),
265265
{ ext h, simp },
@@ -895,8 +895,8 @@ theorem has_fderiv_at_filter.tendsto_nhds
895895
begin
896896
have : tendsto (λ x', f x' - f x) L (𝓝 0),
897897
{ refine h.is_O_sub.trans_tendsto (tendsto_le_left hL _),
898-
rw ← sub_self x, exact tendsto_sub tendsto_id tendsto_const_nhds },
899-
have := tendsto_add this tendsto_const_nhds,
898+
rw ← sub_self x, exact tendsto.sub tendsto_id tendsto_const_nhds },
899+
have := tendsto.add this tendsto_const_nhds,
900900
rw zero_add (f x) at this,
901901
exact this.congr (by simp)
902902
end
@@ -963,7 +963,7 @@ begin
963963
have : 0 = ∥p - p∥, by simp,
964964
rw this,
965965
have : continuous (λx, ∥x-p∥) :=
966-
continuous_norm.comp (continuous_sub continuous_id continuous_const),
966+
continuous_norm.comp (continuous.sub continuous_id continuous_const),
967967
exact this.tendsto p },
968968
simp only [forall_prop_of_false, not_false_iff, one_ne_zero, forall_true_iff] },
969969
simp only [one_mul, asymptotics.is_o_norm_right] at B,

src/analysis/calculus/mean_value.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ begin
4040
{ apply continuous_on.prod,
4141
{ refine continuous_norm.comp_continuous_on _,
4242
apply continuous_on.sub hf.continuous_on continuous_on_const },
43-
{ exact (continuous_mul continuous_const continuous_id).continuous_on } },
43+
{ exact (continuous.mul continuous_const continuous_id).continuous_on } },
4444
show is_closed K, from
4545
A.preimage_closed_of_closed is_closed_Icc (ordered_topology.is_closed_le' _) },
4646
have : k = 1,

src/analysis/calculus/tangent_cone.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ begin
100100
have B : tendsto (λn, ∥c n • d n∥) at_top (𝓝 ∥y∥) :=
101101
(continuous_norm.tendsto _).comp hd,
102102
have C : tendsto (λn, ∥c n∥⁻¹ * ∥c n • d n∥) at_top (𝓝 (0 * ∥y∥)) :=
103-
tendsto_mul A B,
103+
tendsto.mul A B,
104104
rw zero_mul at C,
105105
have : {n | ∥c n∥⁻¹ * ∥c n • d n∥ = ∥d n∥} ∈ (@at_top ℕ _),
106106
{ have : {n | 1 ≤ ∥c n∥} ∈ (@at_top ℕ _) :=
@@ -124,7 +124,7 @@ begin
124124
refine ⟨c, d, _, ctop, clim⟩,
125125
have : {n : ℕ | x + d n ∈ t} ∈ at_top,
126126
{ have : tendsto (λn, x + d n) at_top (𝓝 (x + 0)) :=
127-
tendsto_add tendsto_const_nhds (tangent_cone_at.lim_zero ctop clim),
127+
tendsto.add tendsto_const_nhds (tangent_cone_at.lim_zero ctop clim),
128128
rw add_zero at this,
129129
exact mem_map.1 (this ht) },
130130
exact inter_mem_sets ds this

src/analysis/complex/exponential.lean

Lines changed: 11 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -127,9 +127,9 @@ lemma continuous_cos : continuous cos :=
127127
differentiable_cos.continuous
128128

129129
lemma continuous_tan : continuous (λ x : {x // cos x ≠ 0}, tan x) :=
130-
continuous_mul
130+
continuous.mul
131131
(continuous_sin.comp continuous_subtype_val)
132-
(continuous_inv subtype.property
132+
(continuous.inv subtype.property
133133
(continuous_cos.comp continuous_subtype_val))
134134

135135
/-- The complex hyperbolic sine function is everywhere differentiable, with the derivative `sinh x`. -/
@@ -216,9 +216,8 @@ differentiable_cos.continuous
216216

217217
lemma continuous_tan : continuous (λ x : {x // cos x ≠ 0}, tan x) :=
218218
by simp only [tan_eq_sin_div_cos]; exact
219-
continuous_mul
220-
(continuous_sin.comp continuous_subtype_val)
221-
(continuous_inv subtype.property
219+
(continuous_sin.comp continuous_subtype_val).mul
220+
(continuous.inv subtype.property
222221
(continuous_cos.comp continuous_subtype_val))
223222

224223
lemma has_deriv_at_sinh (x : ℝ) : has_deriv_at sinh (cosh x) x :=
@@ -348,9 +347,9 @@ begin
348347
have : f₁ = λ h:{h:ℝ // 0 < h}, log x.1 + log h.1,
349348
ext h, rw ← log_mul x.2 h.2,
350349
simp only [this, log_mul x.2 zero_lt_one, log_one], exact
351-
tendsto_add tendsto_const_nhds (tendsto.comp tendsto_log_one_zero continuous_at_subtype_val),
350+
tendsto.add tendsto_const_nhds (tendsto.comp tendsto_log_one_zero continuous_at_subtype_val),
352351
have H2 : tendsto f₂ (𝓝 x) (𝓝 ⟨x.1⁻¹ * x.1, mul_pos (inv_pos x.2) x.2⟩),
353-
rw tendsto_subtype_rng, exact tendsto_mul tendsto_const_nhds continuous_at_subtype_val,
352+
rw tendsto_subtype_rng, exact tendsto.mul tendsto_const_nhds continuous_at_subtype_val,
354353
suffices h : tendsto (f₁ ∘ f₂) (𝓝 x) (𝓝 (log x.1)),
355354
begin
356355
convert h, ext y,
@@ -1701,22 +1700,22 @@ section prove_rpow_is_continuous
17011700
lemma continuous_rpow_aux1 : continuous (λp : {p:ℝ×ℝ // 0 < p.1}, p.val.1 ^ p.val.2) :=
17021701
suffices h : continuous (λ p : {p:ℝ×ℝ // 0 < p.1 }, exp (log p.val.1 * p.val.2)),
17031702
by { convert h, ext p, rw rpow_def_of_pos p.2 },
1704-
continuous_exp.comp $ continuous_mul
1703+
continuous_exp.comp $ continuous.mul
17051704
(show continuous ((λp:{p:ℝ//0 < p}, log (p.val)) ∘ (λp:{p:ℝ×ℝ//0<p.fst}, ⟨p.val.1, p.2⟩)), from
17061705
continuous_log'.comp $ continuous_subtype_mk _ $ continuous_fst.comp continuous_subtype_val)
17071706
(continuous_snd.comp $ continuous_subtype_val.comp continuous_id)
17081707

17091708
lemma continuous_rpow_aux2 : continuous (λ p : {p:ℝ×ℝ // p.1 < 0}, p.val.1 ^ p.val.2) :=
17101709
suffices h : continuous (λp:{p:ℝ×ℝ // p.1 < 0}, exp (log (-p.val.1) * p.val.2) * cos (p.val.2 * π)),
17111710
by { convert h, ext p, rw [rpow_def_of_neg p.2] },
1712-
continuous_mul
1713-
(continuous_exp.comp $ continuous_mul
1711+
continuous.mul
1712+
(continuous_exp.comp $ continuous.mul
17141713
(show continuous $ (λp:{p:ℝ//0<p},
17151714
log (p.val))∘(λp:{p:ℝ×ℝ//p.1<0}, ⟨-p.val.1, neg_pos_of_neg p.2⟩),
1716-
from continuous_log'.comp $ continuous_subtype_mk _ $ continuous_neg'.comp $
1715+
from continuous_log'.comp $ continuous_subtype_mk _ $ continuous_neg.comp $
17171716
continuous_fst.comp continuous_subtype_val)
17181717
(continuous_snd.comp $ continuous_subtype_val.comp continuous_id))
1719-
(continuous_cos.comp $ continuous_mul
1718+
(continuous_cos.comp $ continuous.mul
17201719
(continuous_snd.comp $ continuous_subtype_val.comp continuous_id) continuous_const)
17211720

17221721
lemma continuous_at_rpow_of_ne_zero (hx : x ≠ 0) (y : ℝ) :

src/analysis/normed_space/banach.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -158,13 +158,13 @@ begin
158158
tendsto.comp (hf.continuous.tendsto _) this,
159159
simp only [fsumeq] at L₁,
160160
have L₂ : tendsto (λn, y - (h^[n]) y) at_top (𝓝 (y - 0)),
161-
{ refine tendsto_sub tendsto_const_nhds _,
161+
{ refine tendsto.sub tendsto_const_nhds _,
162162
rw tendsto_iff_norm_tendsto_zero,
163163
simp only [sub_zero],
164164
refine squeeze_zero (λ_, norm_nonneg _) hnle _,
165165
have : 0 = 0 * ∥y∥, by rw zero_mul,
166166
rw this,
167-
refine tendsto_mul _ tendsto_const_nhds,
167+
refine tendsto.mul _ tendsto_const_nhds,
168168
exact tendsto_pow_at_top_nhds_0_of_lt_1 (by norm_num) (by norm_num) },
169169
have feq : f x = y - 0,
170170
{ apply tendsto_nhds_unique _ L₁ L₂,

src/analysis/normed_space/basic.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -337,12 +337,12 @@ instance normed_ring_top_monoid [normed_ring α] : topological_monoid α :=
337337
apply squeeze_zero,
338338
{ intro, apply norm_nonneg },
339339
{ simp only [this], intro, apply norm_add_le },
340-
{ rw ←zero_add (0 : ℝ), apply tendsto_add,
340+
{ rw ←zero_add (0 : ℝ), apply tendsto.add,
341341
{ apply squeeze_zero,
342342
{ intro, apply norm_nonneg },
343343
{ intro t, show ∥t.fst * t.snd - t.fst * x.snd∥ ≤ ∥t.fst∥ * ∥t.snd - x.snd∥,
344344
rw ←mul_sub, apply norm_mul_le },
345-
{ rw ←mul_zero (∥x.fst∥), apply tendsto_mul,
345+
{ rw ←mul_zero (∥x.fst∥), apply tendsto.mul,
346346
{ apply continuous_iff_continuous_at.1,
347347
apply continuous_norm.comp continuous_fst },
348348
{ apply tendsto_iff_norm_tendsto_zero.1,
@@ -352,7 +352,7 @@ instance normed_ring_top_monoid [normed_ring α] : topological_monoid α :=
352352
{ intro, apply norm_nonneg },
353353
{ intro t, show ∥t.fst * x.snd - x.fst * x.snd∥ ≤ ∥t.fst - x.fst∥ * ∥x.snd∥,
354354
rw ←sub_mul, apply norm_mul_le },
355-
{ rw ←zero_mul (∥x.snd∥), apply tendsto_mul,
355+
{ rw ←zero_mul (∥x.snd∥), apply tendsto.mul,
356356
{ apply tendsto_iff_norm_tendsto_zero.1,
357357
apply continuous_iff_continuous_at.1,
358358
apply continuous_fst },
@@ -533,16 +533,16 @@ begin
533533
have limf': tendsto (λ x, ∥f x - s∥) e (𝓝 0) := tendsto_iff_norm_tendsto_zero.1 limf,
534534
have limg' : tendsto (λ x, ∥g x∥) e (𝓝 ∥b∥) := filter.tendsto.comp (continuous_iff_continuous_at.1 continuous_norm _) limg,
535535

536-
have lim1 := tendsto_mul limf' limg',
536+
have lim1 := tendsto.mul limf' limg',
537537
simp only [zero_mul, sub_eq_add_neg] at lim1,
538538

539539
have limg3 := tendsto_iff_norm_tendsto_zero.1 limg,
540540

541-
have lim2 := tendsto_mul (tendsto_const_nhds : tendsto _ _ (𝓝 ∥ s ∥)) limg3,
541+
have lim2 := tendsto.mul (tendsto_const_nhds : tendsto _ _ (𝓝 ∥ s ∥)) limg3,
542542
simp only [sub_eq_add_neg, mul_zero] at lim2,
543543

544544
rw [show (0:ℝ) = 0 + 0, by simp],
545-
exact tendsto_add lim1 lim2 }
545+
exact tendsto.add lim1 lim2 }
546546
end
547547

548548
lemma tendsto_smul_const {g : γ → F} {e : filter γ} (s : α) {b : F} :

src/analysis/normed_space/bounded_linear_maps.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -119,7 +119,7 @@ tendsto_iff_norm_tendsto_zero.2 $
119119
calc ∥f e - f x∥ = ∥hf.mk' f (e - x)∥ : by rw (hf.mk' _).map_sub e x; refl
120120
... ≤ M * ∥e - x∥ : hM (e - x))
121121
(suffices (λ (e : E), M * ∥e - x∥) →_{x} (M * 0), by simpa,
122-
tendsto_mul tendsto_const_nhds (lim_norm _))
122+
tendsto.mul tendsto_const_nhds (lim_norm _))
123123

124124
lemma continuous (hf : is_bounded_linear_map 𝕜 f) : continuous f :=
125125
continuous_iff_continuous_at.2 $ λ _, hf.tendsto _

src/analysis/normed_space/operator_norm.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -379,8 +379,8 @@ have eq : _ := uniformly_extend_of_ind h_e h_dense f.uniform_continuous,
379379
add :=
380380
begin
381381
refine is_closed_property2 h_dense (is_closed_eq _ _) _,
382-
{ exact cont.comp (_root_.continuous_add continuous_fst continuous_snd) },
383-
{ exact _root_.continuous_add (cont.comp continuous_fst) (cont.comp continuous_snd) },
382+
{ exact cont.comp (_root_.continuous.add continuous_fst continuous_snd) },
383+
{ exact _root_.continuous.add (cont.comp continuous_fst) (cont.comp continuous_snd) },
384384
{ assume x y, rw ← e.map_add, simp only [eq], exact f.map_add _ _ },
385385
end,
386386
smul := λk,
@@ -419,7 +419,7 @@ begin
419419
{ refine op_norm_le_bound ψ _ (is_closed_property h_dense (is_closed_le _ _) _),
420420
{ exact mul_nonneg N0 (norm_nonneg _) },
421421
{ exact continuous_norm.comp (cont ψ) },
422-
{ exact continuous_mul continuous_const continuous_norm },
422+
{ exact continuous.mul continuous_const continuous_norm },
423423
{ assume x,
424424
rw eq,
425425
calc ∥f x∥ ≤ ∥f∥ * ∥x∥ : le_op_norm _ _

src/analysis/normed_space/real_inner_product.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -250,7 +250,7 @@ begin
250250
have h : tendsto (λ n:ℕ, δ) at_top (𝓝 δ),
251251
exact tendsto_const_nhds,
252252
have h' : tendsto (λ n:ℕ, δ + 1 / (n + 1)) at_top (𝓝 δ),
253-
convert tendsto_add h tendsto_one_div_add_at_top_nhds_0_nat, simp only [add_zero],
253+
convert tendsto.add h tendsto_one_div_add_at_top_nhds_0_nat, simp only [add_zero],
254254
exact tendsto_of_tendsto_of_tendsto_of_le_of_le h h'
255255
(by { rw mem_at_top_sets, use 0, assume n hn, exact δ_le _ })
256256
(by { rw mem_at_top_sets, use 0, assume n hn, exact le_of_lt (hw _) }),
@@ -316,21 +316,21 @@ begin
316316
apply tendsto.comp,
317317
{ convert continuous_sqrt.continuous_at, exact sqrt_zero.symm },
318318
have eq₁ : tendsto (λ (n : ℕ), 8 * δ * (1 / (n + 1))) at_top (𝓝 (0:ℝ)),
319-
convert tendsto_mul (@tendsto_const_nhds _ _ _ (8 * δ) _) tendsto_one_div_add_at_top_nhds_0_nat,
319+
convert tendsto.mul (@tendsto_const_nhds _ _ _ (8 * δ) _) tendsto_one_div_add_at_top_nhds_0_nat,
320320
simp only [mul_zero],
321321
have : tendsto (λ (n : ℕ), (4:ℝ) * (1 / (n + 1))) at_top (𝓝 (0:ℝ)),
322-
convert tendsto_mul (@tendsto_const_nhds _ _ _ (4:ℝ) _) tendsto_one_div_add_at_top_nhds_0_nat,
322+
convert tendsto.mul (@tendsto_const_nhds _ _ _ (4:ℝ) _) tendsto_one_div_add_at_top_nhds_0_nat,
323323
simp only [mul_zero],
324324
have eq₂ : tendsto (λ (n : ℕ), (4:ℝ) * (1 / (n + 1)) * (1 / (n + 1))) at_top (𝓝 (0:ℝ)),
325-
convert tendsto_mul this tendsto_one_div_add_at_top_nhds_0_nat,
325+
convert tendsto.mul this tendsto_one_div_add_at_top_nhds_0_nat,
326326
simp only [mul_zero],
327-
convert tendsto_add eq₁ eq₂, simp only [add_zero],
327+
convert tendsto.add eq₁ eq₂, simp only [add_zero],
328328
-- Step 3: By completeness of `K`, let `w : ℕ → K` converge to some `v : K`.
329329
-- Prove that it satisfies all requirements.
330330
rcases cauchy_seq_tendsto_of_is_complete h₁ (λ n, _) seq_is_cauchy with ⟨v, hv, w_tendsto⟩,
331331
use v, use hv,
332332
have h_cont : continuous (λ v, ∥u - v∥) :=
333-
continuous.comp continuous_norm (continuous_sub continuous_const continuous_id),
333+
continuous.comp continuous_norm (continuous.sub continuous_const continuous_id),
334334
have : tendsto (λ n, ∥u - w n∥) at_top (𝓝 ∥u - v∥),
335335
convert (tendsto.comp h_cont.continuous_at w_tendsto),
336336
exact tendsto_nhds_unique at_top_ne_bot this norm_tendsto,

src/analysis/specific_limits.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ lemma tendsto_inverse_at_top_nhds_0_nat : tendsto (λ n : ℕ, (n : ℝ)⁻¹) a
138138
tendsto.comp tendsto_inverse_at_top_nhds_0 (tendsto_coe_nat_real_at_top_iff.2 tendsto_id)
139139

140140
lemma tendsto_const_div_at_top_nhds_0_nat (C : ℝ) : tendsto (λ n : ℕ, C / n) at_top (𝓝 0) :=
141-
by simpa only [mul_zero] using tendsto_mul tendsto_const_nhds tendsto_inverse_at_top_nhds_0_nat
141+
by simpa only [mul_zero] using tendsto.mul tendsto_const_nhds tendsto_inverse_at_top_nhds_0_nat
142142

143143
lemma tendsto_one_div_add_at_top_nhds_0_nat :
144144
tendsto (λ n : ℕ, 1 / ((n : ℝ) + 1)) at_top (𝓝 0) :=
@@ -151,8 +151,8 @@ have r ≠ 1, from ne_of_lt h₂,
151151
have r + -10,
152152
by rw [←sub_eq_add_neg, ne, sub_eq_iff_eq_add]; simp; assumption,
153153
have tendsto (λn, (r ^ n - 1) * (r - 1)⁻¹) at_top (𝓝 ((0 - 1) * (r - 1)⁻¹)),
154-
from tendsto_mul
155-
(tendsto_sub (tendsto_pow_at_top_nhds_0_of_lt_1 h₁ h₂) tendsto_const_nhds) tendsto_const_nhds,
154+
from tendsto.mul
155+
(tendsto.sub (tendsto_pow_at_top_nhds_0_of_lt_1 h₁ h₂) tendsto_const_nhds) tendsto_const_nhds,
156156
have (λ n, (range n).sum (λ i, r ^ i)) = (λ n, geom_series r n) := rfl,
157157
(has_sum_iff_tendsto_nat_of_nonneg (pow_nonneg h₁) _).mpr $
158158
by simp [neg_inv, geom_sum, div_eq_mul_inv, *] at *

0 commit comments

Comments
 (0)