@@ -407,6 +407,19 @@ lemma _root_.is_min.Iio_eq (h : is_min a) : Iio a = ∅ := eq_empty_of_subset_em
407
407
lemma Iic_inter_Ioc_of_le (h : a ≤ c) : Iic a ∩ Ioc b c = Ioc b a :=
408
408
ext $ λ x, ⟨λ H, ⟨H.2 .1 , H.1 ⟩, λ H, ⟨H.2 , H.1 , H.2 .trans h⟩⟩
409
409
410
+ lemma not_mem_Icc_of_lt (ha : c < a) : c ∉ Icc a b := λ h, ha.not_le h.1
411
+ lemma not_mem_Icc_of_gt (hb : b < c) : c ∉ Icc a b := λ h, hb.not_le h.2
412
+ lemma not_mem_Ico_of_lt (ha : c < a) : c ∉ Ico a b := λ h, ha.not_le h.1
413
+ lemma not_mem_Ioc_of_gt (hb : b < c) : c ∉ Ioc a b := λ h, hb.not_le h.2
414
+
415
+ @[simp] lemma not_mem_Ioi_self : a ∉ Ioi a := lt_irrefl _
416
+ @[simp] lemma not_mem_Iio_self : b ∉ Iio b := lt_irrefl _
417
+
418
+ lemma not_mem_Ioc_of_le (ha : c ≤ a) : c ∉ Ioc a b := λ h, lt_irrefl _ $ h.1 .trans_le ha
419
+ lemma not_mem_Ico_of_ge (hb : b ≤ c) : c ∉ Ico a b := λ h, lt_irrefl _ $ h.2 .trans_le hb
420
+ lemma not_mem_Ioo_of_le (ha : c ≤ a) : c ∉ Ioo a b := λ h, lt_irrefl _ $ h.1 .trans_le ha
421
+ lemma not_mem_Ioo_of_ge (hb : b ≤ c) : c ∉ Ioo a b := λ h, lt_irrefl _ $ h.2 .trans_le hb
422
+
410
423
end preorder
411
424
412
425
section partial_order
@@ -594,38 +607,10 @@ lemma not_mem_Ici : c ∉ Ici a ↔ c < a := not_le
594
607
595
608
lemma not_mem_Iic : c ∉ Iic b ↔ b < c := not_le
596
609
597
- lemma not_mem_Icc_of_lt (ha : c < a) : c ∉ Icc a b :=
598
- not_mem_subset Icc_subset_Ici_self $ not_mem_Ici.mpr ha
599
-
600
- lemma not_mem_Icc_of_gt (hb : b < c) : c ∉ Icc a b :=
601
- not_mem_subset Icc_subset_Iic_self $ not_mem_Iic.mpr hb
602
-
603
- lemma not_mem_Ico_of_lt (ha : c < a) : c ∉ Ico a b :=
604
- not_mem_subset Ico_subset_Ici_self $ not_mem_Ici.mpr ha
605
-
606
- lemma not_mem_Ioc_of_gt (hb : b < c) : c ∉ Ioc a b :=
607
- not_mem_subset Ioc_subset_Iic_self $ not_mem_Iic.mpr hb
608
-
609
610
lemma not_mem_Ioi : c ∉ Ioi a ↔ c ≤ a := not_lt
610
611
611
612
lemma not_mem_Iio : c ∉ Iio b ↔ b ≤ c := not_lt
612
613
613
- @[simp] lemma not_mem_Ioi_self : a ∉ Ioi a := lt_irrefl _
614
-
615
- @[simp] lemma not_mem_Iio_self : b ∉ Iio b := lt_irrefl _
616
-
617
- lemma not_mem_Ioc_of_le (ha : c ≤ a) : c ∉ Ioc a b :=
618
- not_mem_subset Ioc_subset_Ioi_self $ not_mem_Ioi.mpr ha
619
-
620
- lemma not_mem_Ico_of_ge (hb : b ≤ c) : c ∉ Ico a b :=
621
- not_mem_subset Ico_subset_Iio_self $ not_mem_Iio.mpr hb
622
-
623
- lemma not_mem_Ioo_of_le (ha : c ≤ a) : c ∉ Ioo a b :=
624
- not_mem_subset Ioo_subset_Ioi_self $ not_mem_Ioi.mpr ha
625
-
626
- lemma not_mem_Ioo_of_ge (hb : b ≤ c) : c ∉ Ioo a b :=
627
- not_mem_subset Ioo_subset_Iio_self $ not_mem_Iio.mpr hb
628
-
629
614
@[simp] lemma compl_Iic : (Iic a)ᶜ = Ioi a := ext $ λ _, not_le
630
615
@[simp] lemma compl_Ici : (Ici a)ᶜ = Iio a := ext $ λ _, not_le
631
616
@[simp] lemma compl_Iio : (Iio a)ᶜ = Ici a := ext $ λ _, not_lt
0 commit comments