This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +2
-7
lines changed Expand file tree Collapse file tree 1 file changed +2
-7
lines changed Original file line number Diff line number Diff line change @@ -86,24 +86,19 @@ by cases α; refl
86
86
⟨λ h, symm_symm_eq α ▸ symm_symm_eq β ▸ congr_arg symm h, congr_arg symm⟩
87
87
88
88
/-- Identity isomorphism. -/
89
- @[refl] def refl (X : C) : X ≅ X :=
89
+ @[refl, simps ] def refl (X : C) : X ≅ X :=
90
90
{ hom := 𝟙 X,
91
91
inv := 𝟙 X }
92
92
93
- @[simp] lemma refl_hom (X : C) : (iso.refl X).hom = 𝟙 X := rfl
94
- @[simp] lemma refl_inv (X : C) : (iso.refl X).inv = 𝟙 X := rfl
95
93
@[simp] lemma refl_symm (X : C) : (iso.refl X).symm = iso.refl X := rfl
96
94
97
95
/-- Composition of two isomorphisms -/
98
- @[trans] def trans (α : X ≅ Y) (β : Y ≅ Z) : X ≅ Z :=
96
+ @[trans, simps ] def trans (α : X ≅ Y) (β : Y ≅ Z) : X ≅ Z :=
99
97
{ hom := α.hom ≫ β.hom,
100
98
inv := β.inv ≫ α.inv }
101
99
102
100
infixr ` ≪≫ `:80 := iso.trans -- type as `\ll \gg`.
103
101
104
- @[simp] lemma trans_hom (α : X ≅ Y) (β : Y ≅ Z) : (α ≪≫ β).hom = α.hom ≫ β.hom := rfl
105
- @[simp] lemma trans_inv (α : X ≅ Y) (β : Y ≅ Z) : (α ≪≫ β).inv = β.inv ≫ α.inv := rfl
106
-
107
102
@[simp] lemma trans_mk {X Y Z : C}
108
103
(hom : X ⟶ Y) (inv : Y ⟶ X) (hom_inv_id) (inv_hom_id)
109
104
(hom' : Y ⟶ Z) (inv' : Z ⟶ Y) (hom_inv_id') (inv_hom_id') (hom_inv_id'') (inv_hom_id'') :
You can’t perform that action at this time.
0 commit comments