Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 44f4d70

Browse files
committed
chore(*): use dot-notation for is_conj.symm and is_conj.trans (#9498)
renames: * is_conj_refl -> is_conj.refl * is_conj_symm -> is_conj.symm * is_conj_trans -> is_conj.trans
1 parent c1936c1 commit 44f4d70

File tree

3 files changed

+11
-11
lines changed

3 files changed

+11
-11
lines changed

src/algebra/group/conj.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -25,13 +25,13 @@ variables [monoid α] [monoid β]
2525
/-- We say that `a` is conjugate to `b` if for some unit `c` we have `c * a * c⁻¹ = b`. -/
2626
def is_conj (a b : α) := ∃ c : units α, semiconj_by ↑c a b
2727

28-
@[refl] lemma is_conj_refl (a : α) : is_conj a a :=
28+
@[refl] lemma is_conj.refl (a : α) : is_conj a a :=
2929
1, semiconj_by.one_left a⟩
3030

31-
@[symm] lemma is_conj_symm {a b : α} : is_conj a b → is_conj b a
31+
@[symm] lemma is_conj.symm {a b : α} : is_conj a b → is_conj b a
3232
| ⟨c, hc⟩ := ⟨c⁻¹, hc.units_inv_symm_left⟩
3333

34-
@[trans] lemma is_conj_trans {a b c : α} : is_conj a b → is_conj b c → is_conj a c
34+
@[trans] lemma is_conj.trans {a b c : α} : is_conj a b → is_conj b c → is_conj a c
3535
| ⟨c₁, hc₁⟩ ⟨c₂, hc₂⟩ := ⟨c₂ * c₁, hc₂.mul_left hc₁⟩
3636

3737
@[simp] lemma is_conj_iff_eq {α : Type*} [comm_monoid α] {a b : α} : is_conj a b ↔ a = b :=
@@ -58,7 +58,7 @@ variables [group α]
5858
⟨λ ⟨c, hc⟩, mul_right_cancel (hc.symm.trans ((mul_one _).trans (one_mul _).symm)), λ h, by rw [h]⟩
5959

6060
@[simp] lemma is_conj_one_left {a : α} : is_conj a 1 ↔ a = 1 :=
61-
calc is_conj a 1 ↔ is_conj 1 a : ⟨is_conj_symm, is_conj_symm
61+
calc is_conj a 1 ↔ is_conj 1 a : ⟨is_conj.symm, is_conj.symm
6262
... ↔ a = 1 : is_conj_one_right
6363

6464
@[simp] lemma conj_inv {a b : α} : (b * a * b⁻¹)⁻¹ = b * a⁻¹ * b⁻¹ :=
@@ -103,7 +103,7 @@ where possible, try to keep them in sync -/
103103

104104
/-- The setoid of the relation `is_conj` iff there is a unit `u` such that `u * x = y * u` -/
105105
protected def setoid (α : Type*) [monoid α] : setoid α :=
106-
{ r := is_conj, iseqv := ⟨is_conj_refl, λa b, is_conj_symm, λa b c, is_conj_trans⟩ }
106+
{ r := is_conj, iseqv := ⟨is_conj.refl, λa b, is_conj.symm, λa b c, is_conj.trans⟩ }
107107

108108
end is_conj
109109

@@ -186,11 +186,11 @@ variables [monoid α]
186186
/-- Given an element `a`, `conjugates a` is the set of conjugates. -/
187187
def conjugates_of (a : α) : set α := {b | is_conj a b}
188188

189-
lemma mem_conjugates_of_self {a : α} : a ∈ conjugates_of a := is_conj_refl _
189+
lemma mem_conjugates_of_self {a : α} : a ∈ conjugates_of a := is_conj.refl _
190190

191191
lemma is_conj.conjugates_of_eq {a b : α} (ab : is_conj a b) :
192192
conjugates_of a = conjugates_of b :=
193-
set.ext (λ g, ⟨λ ag, is_conj_trans (is_conj_symm ab) ag, λ bg, is_conj_trans ab bg⟩)
193+
set.ext (λ g, ⟨λ ag, (ab.symm).trans ag, λ bg, ab.trans bg⟩)
194194

195195
lemma is_conj_iff_conjugates_of_eq {a b : α} :
196196
is_conj a b ↔ conjugates_of a = conjugates_of b :=
@@ -211,7 +211,7 @@ local attribute [instance] is_conj.setoid
211211
def carrier : conj_classes α → set α :=
212212
quotient.lift conjugates_of (λ (a : α) b ab, is_conj.conjugates_of_eq ab)
213213

214-
lemma mem_carrier_mk {a : α} : a ∈ carrier (conj_classes.mk a) := is_conj_refl _
214+
lemma mem_carrier_mk {a : α} : a ∈ carrier (conj_classes.mk a) := is_conj.refl _
215215

216216
lemma mem_carrier_iff_mk_eq {a : α} {b : conj_classes α} :
217217
a ∈ carrier b ↔ conj_classes.mk a = b :=

src/group_theory/perm/cycle_type.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -250,7 +250,7 @@ begin
250250
{ rw is_conj_iff,
251251
use σ'⁻¹,
252252
simp [mul_assoc] },
253-
refine is_conj_trans _ key,
253+
refine is_conj.trans _ key,
254254
have hs : σ.cycle_type = σ'.cycle_type,
255255
{ rw [←finset.mem_def, mem_cycle_factors_finset_iff] at hσ'l,
256256
rw [hσ.cycle_type, ←hσ', hσ'l.left.cycle_type] },

src/group_theory/subgroup/basic.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1174,7 +1174,7 @@ lemma mem_conjugates_of_set_iff {x : G} : x ∈ conjugates_of_set s ↔ ∃ a
11741174
set.mem_bUnion_iff
11751175

11761176
theorem subset_conjugates_of_set : s ⊆ conjugates_of_set s :=
1177-
λ (x : G) (h : x ∈ s), mem_conjugates_of_set_iff.2 ⟨x, h, is_conj_refl _⟩
1177+
λ (x : G) (h : x ∈ s), mem_conjugates_of_set_iff.2 ⟨x, h, is_conj.refl _⟩
11781178

11791179
theorem conjugates_of_set_mono {s t : set G} (h : s ⊆ t) :
11801180
conjugates_of_set s ⊆ conjugates_of_set t :=
@@ -1194,7 +1194,7 @@ lemma conj_mem_conjugates_of_set {x c : G} :
11941194
λ H,
11951195
begin
11961196
rcases (mem_conjugates_of_set_iff.1 H) with ⟨a,h₁,h₂⟩,
1197-
exact mem_conjugates_of_set_iff.2 ⟨a, h₁, is_conj_trans h₂ (is_conj_iff.2 ⟨c,rfl⟩)⟩,
1197+
exact mem_conjugates_of_set_iff.2 ⟨a, h₁, h₂.trans (is_conj_iff.2 ⟨c,rfl⟩)⟩,
11981198
end
11991199

12001200
end group

0 commit comments

Comments
 (0)