@@ -25,13 +25,13 @@ variables [monoid α] [monoid β]
25
25
/-- We say that `a` is conjugate to `b` if for some unit `c` we have `c * a * c⁻¹ = b`. -/
26
26
def is_conj (a b : α) := ∃ c : units α, semiconj_by ↑c a b
27
27
28
- @[refl] lemma is_conj_refl (a : α) : is_conj a a :=
28
+ @[refl] lemma is_conj.refl (a : α) : is_conj a a :=
29
29
⟨1 , semiconj_by.one_left a⟩
30
30
31
- @[symm] lemma is_conj_symm {a b : α} : is_conj a b → is_conj b a
31
+ @[symm] lemma is_conj.symm {a b : α} : is_conj a b → is_conj b a
32
32
| ⟨c, hc⟩ := ⟨c⁻¹, hc.units_inv_symm_left⟩
33
33
34
- @[trans] lemma is_conj_trans {a b c : α} : is_conj a b → is_conj b c → is_conj a c
34
+ @[trans] lemma is_conj.trans {a b c : α} : is_conj a b → is_conj b c → is_conj a c
35
35
| ⟨c₁, hc₁⟩ ⟨c₂, hc₂⟩ := ⟨c₂ * c₁, hc₂.mul_left hc₁⟩
36
36
37
37
@[simp] lemma is_conj_iff_eq {α : Type *} [comm_monoid α] {a b : α} : is_conj a b ↔ a = b :=
@@ -58,7 +58,7 @@ variables [group α]
58
58
⟨λ ⟨c, hc⟩, mul_right_cancel (hc.symm.trans ((mul_one _).trans (one_mul _).symm)), λ h, by rw [h]⟩
59
59
60
60
@[simp] lemma is_conj_one_left {a : α} : is_conj a 1 ↔ a = 1 :=
61
- calc is_conj a 1 ↔ is_conj 1 a : ⟨is_conj_symm, is_conj_symm ⟩
61
+ calc is_conj a 1 ↔ is_conj 1 a : ⟨is_conj.symm, is_conj.symm ⟩
62
62
... ↔ a = 1 : is_conj_one_right
63
63
64
64
@[simp] lemma conj_inv {a b : α} : (b * a * b⁻¹)⁻¹ = b * a⁻¹ * b⁻¹ :=
@@ -103,7 +103,7 @@ where possible, try to keep them in sync -/
103
103
104
104
/-- The setoid of the relation `is_conj` iff there is a unit `u` such that `u * x = y * u` -/
105
105
protected def setoid (α : Type *) [monoid α] : setoid α :=
106
- { r := is_conj, iseqv := ⟨is_conj_refl , λa b, is_conj_symm , λa b c, is_conj_trans ⟩ }
106
+ { r := is_conj, iseqv := ⟨is_conj.refl , λa b, is_conj.symm , λa b c, is_conj.trans ⟩ }
107
107
108
108
end is_conj
109
109
@@ -186,11 +186,11 @@ variables [monoid α]
186
186
/-- Given an element `a`, `conjugates a` is the set of conjugates. -/
187
187
def conjugates_of (a : α) : set α := {b | is_conj a b}
188
188
189
- lemma mem_conjugates_of_self {a : α} : a ∈ conjugates_of a := is_conj_refl _
189
+ lemma mem_conjugates_of_self {a : α} : a ∈ conjugates_of a := is_conj.refl _
190
190
191
191
lemma is_conj.conjugates_of_eq {a b : α} (ab : is_conj a b) :
192
192
conjugates_of a = conjugates_of b :=
193
- set.ext (λ g, ⟨λ ag, is_conj_trans (is_conj_symm ab) ag, λ bg, is_conj_trans ab bg⟩)
193
+ set.ext (λ g, ⟨λ ag, (ab.symm).trans ag, λ bg, ab.trans bg⟩)
194
194
195
195
lemma is_conj_iff_conjugates_of_eq {a b : α} :
196
196
is_conj a b ↔ conjugates_of a = conjugates_of b :=
@@ -211,7 +211,7 @@ local attribute [instance] is_conj.setoid
211
211
def carrier : conj_classes α → set α :=
212
212
quotient.lift conjugates_of (λ (a : α) b ab, is_conj.conjugates_of_eq ab)
213
213
214
- lemma mem_carrier_mk {a : α} : a ∈ carrier (conj_classes.mk a) := is_conj_refl _
214
+ lemma mem_carrier_mk {a : α} : a ∈ carrier (conj_classes.mk a) := is_conj.refl _
215
215
216
216
lemma mem_carrier_iff_mk_eq {a : α} {b : conj_classes α} :
217
217
a ∈ carrier b ↔ conj_classes.mk a = b :=
0 commit comments