Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 455bc65

Browse files
chore(representation_theory/invariants): clean up some simps (#13337)
1 parent e8339bd commit 455bc65

File tree

1 file changed

+11
-9
lines changed

1 file changed

+11
-9
lines changed

src/representation_theory/invariants.lean

Lines changed: 11 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,8 @@ lemma average_def : average k G = ⅟(fintype.card G : k) • ∑ g : G, of k G
4242
theorem mul_average_left (g : G) :
4343
(finsupp.single g 1 * average k G : monoid_algebra k G) = average k G :=
4444
begin
45-
simp [average_def, finset.mul_sum],
45+
simp only [mul_one, finset.mul_sum, algebra.mul_smul_comm, average_def, monoid_algebra.of_apply,
46+
finset.sum_congr, monoid_algebra.single_mul_single],
4647
set f : G → monoid_algebra k G := λ x, finsupp.single x 1,
4748
show ⅟ ↑(fintype.card G) • ∑ (x : G), f (g * x) = ⅟ ↑(fintype.card G) • ∑ (x : G), f x,
4849
rw function.bijective.sum_comp (group.mul_left_bijective g) _,
@@ -55,7 +56,8 @@ end
5556
theorem mul_average_right (g : G) :
5657
average k G * finsupp.single g 1 = average k G :=
5758
begin
58-
simp [average_def, finset.sum_mul],
59+
simp only [mul_one, finset.sum_mul, algebra.smul_mul_assoc, average_def, monoid_algebra.of_apply,
60+
finset.sum_congr, monoid_algebra.single_mul_single],
5961
set f : G → monoid_algebra k G := λ x, finsupp.single x 1,
6062
show ⅟ ↑(fintype.card G) • ∑ (x : G), f (x * g) = ⅟ ↑(fintype.card G) • ∑ (x : G), f x,
6163
rw function.bijective.sum_comp (group.mul_right_bijective g) _,
@@ -73,9 +75,9 @@ The subspace of invariants, consisting of the vectors fixed by all elements of `
7375
-/
7476
def invariants : submodule k V :=
7577
{ carrier := set_of (λ v, ∀ (g : G), g • v = v),
76-
zero_mem' := by simp,
77-
add_mem' := λ v w hv hw g, by simp [hv g, hw g],
78-
smul_mem' := λ r v hv g, by simp [smul_comm, hv g] }
78+
zero_mem' := by simp only [forall_const, set.mem_set_of_eq, smul_zero],
79+
add_mem' := λ v w hv hw g, by simp only [smul_add, add_left_inj, eq_self_iff_true, hv g, hw g],
80+
smul_mem' := λ r v hv g, by simp only [eq_self_iff_true, smul_comm, hv g]}
7981

8082
@[simp]
8183
lemma mem_invariants (v : V) : v ∈ (invariants k G V) ↔ ∀ (g: G), g • v = v := by refl
@@ -104,11 +106,11 @@ theorem smul_average_invariant (v : V) : (average k G) • v ∈ invariants k G
104106
/--
105107
`average k G` acts as the identity on the subspace of invariants.
106108
-/
107-
theorem smul_average_id (v ∈ invariants k G V) : (average k G) • v = v :=
109+
theorem smul_average_id (v : V) (H : v ∈ invariants k G V) : (average k G) • v = v :=
108110
begin
109-
simp at H,
110-
simp [average_def, sum_smul, H, card_univ, nsmul_eq_smul_cast k _ v, smul_smul, of_smul,
111-
-of_apply],
111+
rw [representation.mem_invariants] at H,
112+
simp_rw [average_def, smul_assoc, finset.sum_smul, representation.of_smul, H, finset.sum_const,
113+
finset.card_univ, nsmul_eq_smul_cast k _ v, smul_smul, inv_of_mul_self, one_smul],
112114
end
113115

114116
/--

0 commit comments

Comments
 (0)