@@ -42,7 +42,8 @@ lemma average_def : average k G = ⅟(fintype.card G : k) • ∑ g : G, of k G
42
42
theorem mul_average_left (g : G) :
43
43
(finsupp.single g 1 * average k G : monoid_algebra k G) = average k G :=
44
44
begin
45
- simp [average_def, finset.mul_sum],
45
+ simp only [mul_one, finset.mul_sum, algebra.mul_smul_comm, average_def, monoid_algebra.of_apply,
46
+ finset.sum_congr, monoid_algebra.single_mul_single],
46
47
set f : G → monoid_algebra k G := λ x, finsupp.single x 1 ,
47
48
show ⅟ ↑(fintype.card G) • ∑ (x : G), f (g * x) = ⅟ ↑(fintype.card G) • ∑ (x : G), f x,
48
49
rw function.bijective.sum_comp (group.mul_left_bijective g) _,
55
56
theorem mul_average_right (g : G) :
56
57
average k G * finsupp.single g 1 = average k G :=
57
58
begin
58
- simp [average_def, finset.sum_mul],
59
+ simp only [mul_one, finset.sum_mul, algebra.smul_mul_assoc, average_def, monoid_algebra.of_apply,
60
+ finset.sum_congr, monoid_algebra.single_mul_single],
59
61
set f : G → monoid_algebra k G := λ x, finsupp.single x 1 ,
60
62
show ⅟ ↑(fintype.card G) • ∑ (x : G), f (x * g) = ⅟ ↑(fintype.card G) • ∑ (x : G), f x,
61
63
rw function.bijective.sum_comp (group.mul_right_bijective g) _,
@@ -73,9 +75,9 @@ The subspace of invariants, consisting of the vectors fixed by all elements of `
73
75
-/
74
76
def invariants : submodule k V :=
75
77
{ carrier := set_of (λ v, ∀ (g : G), g • v = v),
76
- zero_mem' := by simp,
77
- add_mem' := λ v w hv hw g, by simp [ hv g, hw g],
78
- smul_mem' := λ r v hv g, by simp [ smul_comm, hv g] }
78
+ zero_mem' := by simp only [forall_const, set.mem_set_of_eq, smul_zero] ,
79
+ add_mem' := λ v w hv hw g, by simp only [smul_add, add_left_inj, eq_self_iff_true, hv g, hw g],
80
+ smul_mem' := λ r v hv g, by simp only [eq_self_iff_true, smul_comm, hv g]}
79
81
80
82
@[simp]
81
83
lemma mem_invariants (v : V) : v ∈ (invariants k G V) ↔ ∀ (g: G), g • v = v := by refl
@@ -104,11 +106,11 @@ theorem smul_average_invariant (v : V) : (average k G) • v ∈ invariants k G
104
106
/--
105
107
`average k G` acts as the identity on the subspace of invariants.
106
108
-/
107
- theorem smul_average_id (v ∈ invariants k G V) : (average k G) • v = v :=
109
+ theorem smul_average_id (v : V) (H : v ∈ invariants k G V) : (average k G) • v = v :=
108
110
begin
109
- simp at H,
110
- simp [average_def, sum_smul, H, card_univ, nsmul_eq_smul_cast k _ v, smul_smul, of_smul ,
111
- -of_apply ],
111
+ rw [representation.mem_invariants] at H,
112
+ simp_rw [average_def, smul_assoc, finset.sum_smul, representation.of_smul, H, finset.sum_const ,
113
+ finset.card_univ, nsmul_eq_smul_cast k _ v, smul_smul, inv_of_mul_self, one_smul ],
112
114
end
113
115
114
116
/--
0 commit comments