This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +16
-0
lines changed Expand file tree Collapse file tree 1 file changed +16
-0
lines changed Original file line number Diff line number Diff line change @@ -198,6 +198,10 @@ theorem maps_to.mem_iff (h : maps_to f s t) (hc : maps_to f sᶜ tᶜ) {x} : f x
198
198
theorem inj_on_empty (f : α → β) : inj_on f ∅ :=
199
199
λ _ h₁, false.elim h₁
200
200
201
+ theorem inj_on.eq_iff {x y} (h : inj_on f s) (hx : x ∈ s) (hy : y ∈ s) :
202
+ f x = f y ↔ x = y :=
203
+ ⟨h hx hy, λ h, h ▸ rfl⟩
204
+
201
205
theorem inj_on.congr (h₁ : inj_on f₁ s) (h : eq_on f₁ f₂ s) :
202
206
inj_on f₂ s :=
203
207
λ x hx y hy, h hx ▸ h hy ▸ h₁ hx hy
@@ -625,6 +629,18 @@ lemma strict_mono_decr_on.inj_on [linear_order α] [preorder β] {f : α → β}
625
629
s.inj_on f :=
626
630
@strict_mono_incr_on.inj_on α (order_dual β) _ _ f s H
627
631
632
+ lemma strict_mono_incr_on.comp [preorder α] [preorder β] [preorder γ]
633
+ {g : β → γ} {f : α → β} {s : set α} {t : set β} (hg : strict_mono_incr_on g t)
634
+ (hf : strict_mono_incr_on f s) (hs : set.maps_to f s t) :
635
+ strict_mono_incr_on (g ∘ f) s :=
636
+ λ x hx y hy hxy, hg (hs hx) (hs hy) $ hf hx hy hxy
637
+
638
+ lemma strict_mono.comp_strict_mono_incr_on [preorder α] [preorder β] [preorder γ]
639
+ {g : β → γ} {f : α → β} {s : set α} (hg : strict_mono g)
640
+ (hf : strict_mono_incr_on f s) :
641
+ strict_mono_incr_on (g ∘ f) s :=
642
+ λ x hx y hy hxy, hg $ hf hx hy hxy
643
+
628
644
namespace function
629
645
630
646
open set
You can’t perform that action at this time.
0 commit comments