@@ -378,26 +378,30 @@ begin
378
378
exact tendsto_at_top_infi (assume n m hnm, measure_mono $ hm hnm),
379
379
end
380
380
381
- /-- One direction of the **Borel-Cantelli lemma** : if (sᵢ) is a sequence of measurable sets such
382
- that ∑ μ sᵢ exists, then the limit superior of the sᵢ is a null set. -/
383
- lemma measure_limsup_eq_zero {s : ℕ → set α} (hs : ∀ i, measurable_set (s i))
384
- (hs' : ∑' i, μ (s i) ≠ ∞) : μ (limsup at_top s) = 0 :=
385
- begin
386
- simp only [limsup_eq_infi_supr_of_nat', set.infi_eq_Inter, set.supr_eq_Union],
387
- -- We will show that both `μ (⨅ n, ⨆ i, s (i + n))` and `0` are the limit of `μ (⊔ i, s (i + n))`
388
- -- as `n` tends to infinity. For the former, we use continuity from above.
389
- refine tendsto_nhds_unique
390
- (tendsto_measure_Inter (λ i, measurable_set.Union (λ b, hs (b + i))) _
391
- ⟨0 , ne_top_of_le_ne_top hs' (measure_Union_le s)⟩) _,
392
- { intros n m hnm x,
393
- simp only [set.mem_Union],
394
- exact λ ⟨i, hi⟩, ⟨i + (m - n), by simpa only [add_assoc, nat.sub_add_cancel hnm] using hi⟩ },
395
- { -- For the latter, notice that, `μ (⨆ i, s (i + n)) ≤ ∑' s (i + n)`. Since the right hand side
396
- -- converges to `0` by hypothesis, so does the former and the proof is complete.
397
- exact (tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds
398
- (ennreal.tendsto_sum_nat_add (μ ∘ s) hs')
399
- (eventually_of_forall (by simp only [forall_const, zero_le]))
400
- (eventually_of_forall (λ i, measure_Union_le _))) }
381
+ /-- One direction of the **Borel-Cantelli lemma** : if (sᵢ) is a sequence of sets such
382
+ that `∑ μ sᵢ` is finite, then the limit superior of the `sᵢ` is a null set. -/
383
+ lemma measure_limsup_eq_zero {s : ℕ → set α} (hs : ∑' i, μ (s i) ≠ ∞) : μ (limsup at_top s) = 0 :=
384
+ begin
385
+ -- First we replace the sequence `sₙ` with a sequence of measurable sets `tₙ ⊇ sₙ` of the same
386
+ -- measure.
387
+ set t : ℕ → set α := λ n, to_measurable μ (s n),
388
+ have ht : ∑' i, μ (t i) ≠ ∞, by simpa only [t, measure_to_measurable] using hs,
389
+ suffices : μ (limsup at_top t) = 0 ,
390
+ { have A : s ≤ t := λ n, subset_to_measurable μ (s n),
391
+ -- TODO default args fail
392
+ exact measure_mono_null (limsup_le_limsup (eventually_of_forall A) is_cobounded_le_of_bot
393
+ is_bounded_le_of_top) this },
394
+ -- Next we unfold `limsup` for sets and replace equality with an inequality
395
+ simp only [limsup_eq_infi_supr_of_nat', set.infi_eq_Inter, set.supr_eq_Union,
396
+ ← nonpos_iff_eq_zero],
397
+ -- Finally, we estimate `μ (⋃ i, t (i + n))` by `∑ i', μ (t (i + n))`
398
+ refine le_of_tendsto_of_tendsto'
399
+ (tendsto_measure_Inter (λ i, measurable_set.Union (λ b, measurable_set_to_measurable _ _)) _
400
+ ⟨0 , ne_top_of_le_ne_top ht (measure_Union_le t)⟩)
401
+ (ennreal.tendsto_sum_nat_add (μ ∘ t) ht) (λ n, measure_Union_le _),
402
+ intros n m hnm x,
403
+ simp only [set.mem_Union],
404
+ exact λ ⟨i, hi⟩, ⟨i + (m - n), by simpa only [add_assoc, nat.sub_add_cancel hnm] using hi⟩
401
405
end
402
406
403
407
lemma measure_if {x : β} {t : set β} {s : set α} :
@@ -1556,20 +1560,19 @@ lemma self_mem_ae_restrict {s} (hs : measurable_set s) : s ∈ (μ.restrict s).a
1556
1560
by simp only [ae_restrict_eq hs, exists_prop, mem_principal, mem_inf_iff];
1557
1561
exact ⟨_, univ_mem, s, subset.rfl, (univ_inter s).symm⟩
1558
1562
1559
- /-- A version of the Borel-Cantelli lemma: if `sᵢ` is a sequence of measurable sets such that
1563
+ /-- A version of the **Borel-Cantelli lemma** : if `pᵢ` is a sequence of predicates such that
1564
+ `∑ μ {x | pᵢ x}` is finite, then the measure of `x` such that `pᵢ x` holds frequently as `i → ∞` (or
1565
+ equivalently, `pᵢ x` holds for infinitely many `i`) is equal to zero. -/
1566
+ lemma measure_set_of_frequently_eq_zero {p : ℕ → α → Prop } (hp : ∑' i, μ {x | p i x} ≠ ∞) :
1567
+ μ {x | ∃ᶠ n in at_top, p n x} = 0 :=
1568
+ by simpa only [limsup_eq_infi_supr_of_nat, frequently_at_top, set_of_forall, set_of_exists]
1569
+ using measure_limsup_eq_zero hp
1570
+
1571
+ /-- A version of the **Borel-Cantelli lemma** : if `sᵢ` is a sequence of sets such that
1560
1572
`∑ μ sᵢ` exists, then for almost all `x`, `x` does not belong to almost all `sᵢ`. -/
1561
- lemma ae_eventually_not_mem {s : ℕ → set α} (hs : ∀ i, measurable_set (s i))
1562
- (hs' : ∑' i, μ (s i) ≠ ∞) : ∀ᵐ x ∂ μ, ∀ᶠ n in at_top, x ∉ s n :=
1563
- begin
1564
- refine measure_mono_null _ (measure_limsup_eq_zero hs hs'),
1565
- rw ←set.le_eq_subset,
1566
- refine le_Inf (λ t ht x hx, _),
1567
- simp only [le_eq_subset, not_exists, eventually_map, exists_prop, ge_iff_le, mem_set_of_eq,
1568
- eventually_at_top, mem_compl_eq, not_forall, not_not_mem] at hx ht,
1569
- rcases ht with ⟨i, hi⟩,
1570
- rcases hx i with ⟨j, ⟨hj, hj'⟩⟩,
1571
- exact hi j hj hj'
1572
- end
1573
+ lemma ae_eventually_not_mem {s : ℕ → set α} (hs : ∑' i, μ (s i) ≠ ∞) :
1574
+ ∀ᵐ x ∂ μ, ∀ᶠ n in at_top, x ∉ s n :=
1575
+ measure_set_of_frequently_eq_zero hs
1573
1576
1574
1577
section dirac
1575
1578
variable [measurable_space α]
0 commit comments