Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 4912740

Browse files
hrmacbethurkud
andcommitted
chore(analysis/inner_product_space/basic): extract common variables (#11214)
Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>
1 parent b72d2ab commit 4912740

File tree

1 file changed

+11
-14
lines changed

1 file changed

+11
-14
lines changed

src/analysis/inner_product_space/basic.lean

Lines changed: 11 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -1577,10 +1577,11 @@ open_locale direct_sum
15771577
def orthogonal_family (V : ι → submodule 𝕜 E) : Prop :=
15781578
∀ ⦃i j⦄, i ≠ j → ∀ {v : E} (hv : v ∈ V i) {w : E} (hw : w ∈ V j), ⟪v, w⟫ = 0
15791579

1580-
variables {𝕜} {V : ι → submodule 𝕜 E} [dec_V : Π i (x : V i), decidable (x ≠ 0)]
1580+
variables {𝕜} {V : ι → submodule 𝕜 E} (hV : orthogonal_family 𝕜 V)
1581+
[dec_V : Π i (x : V i), decidable (x ≠ 0)]
15811582

1582-
include dec_ι
1583-
lemma orthogonal_family.eq_ite (hV : orthogonal_family 𝕜 V) {i j : ι} (v : V i) (w : V j) :
1583+
include hV dec_ι
1584+
lemma orthogonal_family.eq_ite {i j : ι} (v : V i) (w : V j) :
15841585
⟪(v:E), w⟫ = ite (i = j) ⟪(v:E), w⟫ 0 :=
15851586
begin
15861587
split_ifs,
@@ -1589,8 +1590,7 @@ begin
15891590
end
15901591

15911592
include dec_V
1592-
lemma orthogonal_family.inner_right_dfinsupp (hV : orthogonal_family 𝕜 V)
1593-
(l : Π₀ i, V i) (i : ι) (v : V i) :
1593+
lemma orthogonal_family.inner_right_dfinsupp (l : ⨁ i, V i) (i : ι) (v : V i) :
15941594
⟪(v : E), dfinsupp.lsum ℕ (λ i, (V i).subtype) l⟫ = ⟪v, l i⟫ :=
15951595
calc ⟪(v : E), dfinsupp.lsum ℕ (λ i, (V i).subtype) l⟫
15961596
= l.sum (λ j, λ w, ⟪(v:E), w⟫) :
@@ -1615,8 +1615,7 @@ begin
16151615
end
16161616
omit dec_ι dec_V
16171617

1618-
lemma orthogonal_family.inner_right_fintype
1619-
[fintype ι] (hV : orthogonal_family 𝕜 V) (l : Π i, V i) (i : ι) (v : V i) :
1618+
lemma orthogonal_family.inner_right_fintype [fintype ι] (l : Π i, V i) (i : ι) (v : V i) :
16201619
⟪(v : E), ∑ j : ι, l j⟫ = ⟪v, l i⟫ :=
16211620
by classical;
16221621
calc ⟪(v : E), ∑ j : ι, l j⟫
@@ -1628,8 +1627,7 @@ calc ⟪(v : E), ∑ j : ι, l j⟫
16281627
/-- An orthogonal family forms an independent family of subspaces; that is, any collection of
16291628
elements each from a different subspace in the family is linearly independent. In particular, the
16301629
pairwise intersections of elements of the family are 0. -/
1631-
lemma orthogonal_family.independent (hV : orthogonal_family 𝕜 V) :
1632-
complete_lattice.independent V :=
1630+
lemma orthogonal_family.independent : complete_lattice.independent V :=
16331631
begin
16341632
classical,
16351633
apply complete_lattice.independent_of_dfinsupp_lsum_injective,
@@ -1646,13 +1644,12 @@ end
16461644

16471645
/-- The composition of an orthogonal family of subspaces with an injective function is also an
16481646
orthogonal family. -/
1649-
lemma orthogonal_family.comp (hV : orthogonal_family 𝕜 V) {γ : Type*} {f : γ → ι}
1650-
(hf : function.injective f) :
1647+
lemma orthogonal_family.comp {γ : Type*} {f : γ → ι} (hf : function.injective f) :
16511648
orthogonal_family 𝕜 (V ∘ f) :=
16521649
λ i j hij v hv w hw, hV (hf.ne hij) hv hw
16531650

1654-
lemma orthogonal_family.orthonormal_sigma_orthonormal (hV : orthogonal_family 𝕜 V) {α : ι → Type*}
1655-
{v_family : Π i, (α i) → V i} (hv_family : ∀ i, orthonormal 𝕜 (v_family i)) :
1651+
lemma orthogonal_family.orthonormal_sigma_orthonormal : ι → Type*} {v_family : Π i, (α i) → V i}
1652+
(hv_family : ∀ i, orthonormal 𝕜 (v_family i)) :
16561653
orthonormal 𝕜 (λ a : Σ i, α i, (v_family a.1 a.2 : E)) :=
16571654
begin
16581655
split,
@@ -1667,7 +1664,7 @@ begin
16671664
end
16681665

16691666
include dec_ι
1670-
lemma direct_sum.submodule_is_internal.collected_basis_orthonormal (hV : orthogonal_family 𝕜 V)
1667+
lemma direct_sum.submodule_is_internal.collected_basis_orthonormal
16711668
(hV_sum : direct_sum.submodule_is_internal V) {α : ι → Type*}
16721669
{v_family : Π i, basis (α i) 𝕜 (V i)} (hv_family : ∀ i, orthonormal 𝕜 (v_family i)) :
16731670
orthonormal 𝕜 (hV_sum.collected_basis v_family) :=

0 commit comments

Comments
 (0)