Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 4d27ecf

Browse files
committed
refactor(order/conditionally_complete_lattice): csupr_le_csuprcsupr_mono (#13320)
For consistency with `supr_mono` and `infi_mono`
1 parent 6f9cb03 commit 4d27ecf

File tree

4 files changed

+12
-12
lines changed

4 files changed

+12
-12
lines changed

src/dynamics/circle/rotation_number/translation_number.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -839,7 +839,7 @@ begin
839839
-- Now we apply `cSup_div_semiconj` and go back to `f₁` and `f₂`.
840840
refine ⟨⟨_, λ x y hxy, _, λ x, _⟩, cSup_div_semiconj F₂ F₁ (λ x, _)⟩;
841841
simp only [hF₁, hF₂, ← monoid_hom.map_inv, coe_mk],
842-
{ refine csupr_le_csupr (this y) (λ g, _),
842+
{ refine csupr_mono (this y) (λ g, _),
843843
exact mono _ (mono _ hxy) },
844844
{ simp only [map_add_one],
845845
exact (map_csupr_of_continuous_at_of_monotone (continuous_at_id.add continuous_at_const)

src/order/conditionally_complete_lattice.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -455,7 +455,7 @@ lemma le_csupr_of_le {f : ι → α} (H : bdd_above (range f)) (c : ι) (h : a
455455
le_trans h (le_csupr H c)
456456

457457
/--The indexed supremum of two functions are comparable if the functions are pointwise comparable-/
458-
lemma csupr_le_csupr {f g : ι → α} (B : bdd_above (range g)) (H : ∀x, f x ≤ g x) :
458+
lemma csupr_mono {f g : ι → α} (B : bdd_above (range g)) (H : ∀ x, f x ≤ g x) :
459459
supr f ≤ supr g :=
460460
begin
461461
casesI is_empty_or_nonempty ι,
@@ -468,9 +468,9 @@ lemma le_csupr_set {f : β → α} {s : set β}
468468
(le_cSup H $ mem_image_of_mem f hc).trans_eq Sup_image'
469469

470470
/--The indexed infimum of two functions are comparable if the functions are pointwise comparable-/
471-
lemma cinfi_le_cinfi {f g : ι → α} (B : bdd_below (range f)) (H : ∀x, f x ≤ g x) :
471+
lemma cinfi_mono {f g : ι → α} (B : bdd_below (range f)) (H : ∀ x, f x ≤ g x) :
472472
infi f ≤ infi g :=
473-
@csupr_le_csupr (order_dual α) _ _ _ _ B H
473+
@csupr_mono (order_dual α) _ _ _ _ B H
474474

475475
/--The indexed minimum of a function is bounded below by a uniform lower bound-/
476476
lemma le_cinfi [nonempty ι] {f : ι → α} {c : α} (H : ∀x, c ≤ f x) : c ≤ infi f :=

src/topology/metric_space/gluing.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -110,7 +110,7 @@ private lemma glue_dist_triangle (Φ : Z → X) (Ψ : Z → Y) (ε : ℝ)
110110
(B _ _),
111111
intros x y hx, simpa },
112112
rw [this, comp],
113-
refine cinfi_le_cinfi (B _ _) (λp, _),
113+
refine cinfi_mono (B _ _) (λp, _),
114114
calc
115115
dist z (Φ p) + dist x (Ψ p) ≤ (dist y z + dist y (Φ p)) + dist x (Ψ p) :
116116
add_le_add (dist_triangle_left _ _ _) le_rfl
@@ -128,7 +128,7 @@ private lemma glue_dist_triangle (Φ : Z → X) (Ψ : Z → Y) (ε : ℝ)
128128
(B _ _),
129129
intros x y hx, simpa },
130130
rw [this, comp],
131-
refine cinfi_le_cinfi (B _ _) (λp, _),
131+
refine cinfi_mono (B _ _) (λp, _),
132132
calc
133133
dist z (Φ p) + dist x (Ψ p) ≤ dist z (Φ p) + (dist x y + dist y (Ψ p)) :
134134
add_le_add le_rfl (dist_triangle _ _ _)
@@ -146,7 +146,7 @@ private lemma glue_dist_triangle (Φ : Z → X) (Ψ : Z → Y) (ε : ℝ)
146146
(B _ _),
147147
intros x y hx, simpa },
148148
rw [this, comp],
149-
refine cinfi_le_cinfi (B _ _) (λp, _),
149+
refine cinfi_mono (B _ _) (λp, _),
150150
calc
151151
dist x (Φ p) + dist z (Ψ p) ≤ (dist x y + dist y (Φ p)) + dist z (Ψ p) :
152152
add_le_add (dist_triangle _ _ _) le_rfl
@@ -164,7 +164,7 @@ private lemma glue_dist_triangle (Φ : Z → X) (Ψ : Z → Y) (ε : ℝ)
164164
(B _ _),
165165
intros x y hx, simpa },
166166
rw [this, comp],
167-
refine cinfi_le_cinfi (B _ _) (λp, _),
167+
refine cinfi_mono (B _ _) (λp, _),
168168
calc
169169
dist x (Φ p) + dist z (Ψ p) ≤ dist x (Φ p) + (dist y z + dist y (Ψ p)) :
170170
add_le_add le_rfl (dist_triangle_left _ _ _)

src/topology/metric_space/gromov_hausdorff_realized.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -363,8 +363,8 @@ begin
363363
-- prove the inequality but with `dist f g` inside, by using inequalities comparing
364364
-- supr to supr and infi to infi
365365
have Z : (⨆ x, ⨅ y, f (inl x, inr y)) ≤ ⨆ x, ⨅ y, g (inl x, inr y) + dist f g :=
366-
csupr_le_csupr (HD_bound_aux1 _ (dist f g))
367-
(λx, cinfi_le_cinfi ⟨cf, forall_range_iff.2(λi, Hcf _)⟩ (λy, coe_le_coe_add_dist)),
366+
csupr_mono (HD_bound_aux1 _ (dist f g))
367+
(λx, cinfi_mono ⟨cf, forall_range_iff.2(λi, Hcf _)⟩ (λy, coe_le_coe_add_dist)),
368368
-- move the `dist f g` out of the infimum and the supremum, arguing that continuous monotone maps
369369
-- (here the addition of `dist f g`) preserve infimum and supremum
370370
have E1 : ∀ x, (⨅ y, g (inl x, inr y)) + dist f g = ⨅ y, g (inl x, inr y) + dist f g,
@@ -392,8 +392,8 @@ begin
392392
-- prove the inequality but with `dist f g` inside, by using inequalities comparing
393393
-- supr to supr and infi to infi
394394
have Z : (⨆ y, ⨅ x, f (inl x, inr y)) ≤ ⨆ y, ⨅ x, g (inl x, inr y) + dist f g :=
395-
csupr_le_csupr (HD_bound_aux2 _ (dist f g))
396-
(λy, cinfi_le_cinfi ⟨cf, forall_range_iff.2(λi, Hcf _)⟩ (λy, coe_le_coe_add_dist)),
395+
csupr_mono (HD_bound_aux2 _ (dist f g))
396+
(λy, cinfi_mono ⟨cf, forall_range_iff.2(λi, Hcf _)⟩ (λy, coe_le_coe_add_dist)),
397397
-- move the `dist f g` out of the infimum and the supremum, arguing that continuous monotone maps
398398
-- (here the addition of `dist f g`) preserve infimum and supremum
399399
have E1 : ∀ y, (⨅ x, g (inl x, inr y)) + dist f g = ⨅ x, g (inl x, inr y) + dist f g,

0 commit comments

Comments
 (0)