|
| 1 | +import data.set.lattice |
| 2 | +import algebra.group |
| 3 | +import group_theory.subgroup |
| 4 | + |
| 5 | +namespace set |
| 6 | +open function |
| 7 | + |
| 8 | +variables {α : Type*} {β : Type*} (f : α → β) |
| 9 | + |
| 10 | +@[to_additive set.pointwise_zero] |
| 11 | +def pointwise_one [has_one α] : has_one (set α) := ⟨{1}⟩ |
| 12 | + |
| 13 | +local attribute [instance] pointwise_one |
| 14 | + |
| 15 | +@[simp, to_additive set.mem_pointwise_zero] |
| 16 | +lemma mem_pointwise_one [has_one α] (a : α) : |
| 17 | + a ∈ (1 : set α) ↔ a = 1 := |
| 18 | +mem_singleton_iff |
| 19 | + |
| 20 | +@[to_additive set.pointwise_add] |
| 21 | +def pointwise_mul [has_mul α] : has_mul (set α) := |
| 22 | + ⟨λ s t, {a | ∃ x ∈ s, ∃ y ∈ t, a = x * y}⟩ |
| 23 | + |
| 24 | +local attribute [instance] pointwise_one pointwise_mul |
| 25 | + |
| 26 | +@[to_additive set.mem_pointwise_add] |
| 27 | +lemma mem_pointwise_mul [has_mul α] {s t : set α} {a : α} : |
| 28 | + a ∈ s * t ↔ ∃ x ∈ s, ∃ y ∈ t, a = x * y := iff.rfl |
| 29 | + |
| 30 | +def pointwise_mul_semigroup [semigroup α] : semigroup (set α) := |
| 31 | +{ mul_assoc := λ s t u, |
| 32 | + begin |
| 33 | + ext a, split, |
| 34 | + { rintros ⟨_, ⟨x, _, y, _, rfl⟩, z, _, rfl⟩, |
| 35 | + exact ⟨_, ‹_›, _, ⟨_, ‹_›, _, ‹_›, rfl⟩, mul_assoc _ _ _⟩ }, |
| 36 | + { rintros ⟨x, _, _, ⟨y, _, z, _, rfl⟩, rfl⟩, |
| 37 | + exact ⟨_, ⟨_, ‹_›, _, ‹_›, rfl⟩, _, ‹_›, (mul_assoc _ _ _).symm⟩ } |
| 38 | + end, |
| 39 | + ..pointwise_mul } |
| 40 | + |
| 41 | +def pointwise_add_add_semigroup [add_semigroup α] : add_semigroup (set α) := |
| 42 | +{ add_assoc := λ s t u, |
| 43 | + begin |
| 44 | + ext a, split, |
| 45 | + { rintros ⟨_, ⟨x, _, y, _, rfl⟩, z, _, rfl⟩, |
| 46 | + exact ⟨_, ‹_›, _, ⟨_, ‹_›, _, ‹_›, rfl⟩, add_assoc _ _ _⟩ }, |
| 47 | + { rintros ⟨x, _, _, ⟨y, _, z, _, rfl⟩, rfl⟩, |
| 48 | + exact ⟨_, ⟨_, ‹_›, _, ‹_›, rfl⟩, _, ‹_›, (add_assoc _ _ _).symm⟩ } |
| 49 | + end, |
| 50 | + ..pointwise_add } |
| 51 | + |
| 52 | +attribute [to_additive set.pointwise_add_add_semigroup._proof_1] pointwise_mul_semigroup._proof_1 |
| 53 | +attribute [to_additive set.pointwise_add_add_semigroup] pointwise_mul_semigroup |
| 54 | + |
| 55 | +def pointwise_mul_monoid [monoid α] : monoid (set α) := |
| 56 | +{ one_mul := λ s, set.ext $ λ a, |
| 57 | + ⟨by {rintros ⟨_, _, _, _, rfl⟩, simp * at *}, |
| 58 | + λ h, ⟨1, mem_singleton 1, a, h, (one_mul a).symm⟩⟩, |
| 59 | + mul_one := λ s, set.ext $ λ a, |
| 60 | + ⟨by {rintros ⟨_, _, _, _, rfl⟩, simp * at *}, |
| 61 | + λ h, ⟨a, h, 1, mem_singleton 1, (mul_one a).symm⟩⟩, |
| 62 | + ..pointwise_mul_semigroup, |
| 63 | + ..pointwise_one } |
| 64 | + |
| 65 | +def pointwise_add_add_monoid [add_monoid α] : add_monoid (set α) := |
| 66 | +{ zero_add := λ s, set.ext $ λ a, |
| 67 | + ⟨by {rintros ⟨_, _, _, _, rfl⟩, simp * at *}, |
| 68 | + λ h, ⟨0, mem_singleton 0, a, h, (zero_add a).symm⟩⟩, |
| 69 | + add_zero := λ s, set.ext $ λ a, |
| 70 | + ⟨by {rintros ⟨_, _, _, _, rfl⟩, simp * at *}, |
| 71 | + λ h, ⟨a, h, 0, mem_singleton 0, (add_zero a).symm⟩⟩, |
| 72 | + ..pointwise_add_add_semigroup, |
| 73 | + ..pointwise_zero } |
| 74 | + |
| 75 | +attribute [to_additive set.pointwise_add_add_monoid._proof_1] pointwise_mul_monoid._proof_1 |
| 76 | +attribute [to_additive set.pointwise_add_add_monoid._proof_2] pointwise_mul_monoid._proof_2 |
| 77 | +attribute [to_additive set.pointwise_add_add_monoid._proof_3] pointwise_mul_monoid._proof_3 |
| 78 | +attribute [to_additive set.pointwise_add_add_monoid] pointwise_mul_monoid |
| 79 | + |
| 80 | +local attribute [instance] pointwise_mul_monoid |
| 81 | + |
| 82 | +@[to_additive set.singleton.is_add_hom] |
| 83 | +def singleton.is_mul_hom [has_mul α] : is_mul_hom (singleton : α → set α) := |
| 84 | +{ map_mul := λ x y, set.ext $ λ a, by simp [mem_singleton_iff, mem_pointwise_mul] } |
| 85 | + |
| 86 | +@[to_additive set.singleton.is_add_monoid_hom] |
| 87 | +def singleton.is_monoid_hom [monoid α] : is_monoid_hom (singleton : α → set α) := |
| 88 | +{ map_one := rfl, ..singleton.is_mul_hom } |
| 89 | + |
| 90 | +@[to_additive set.pointwise_neg] |
| 91 | +def pointwise_inv [has_inv α] : has_inv (set α) := |
| 92 | +⟨λ s, {a | a⁻¹ ∈ s}⟩ |
| 93 | + |
| 94 | +@[simp] lemma pointwise_mul_empty [has_mul α] (s : set α) : |
| 95 | + s * ∅ = ∅ := |
| 96 | +set.ext $ λ a, ⟨by {rintros ⟨_, _, _, _, rfl⟩, tauto}, false.elim⟩ |
| 97 | + |
| 98 | +@[simp] lemma empty_pointwise_mul [has_mul α] (s : set α) : |
| 99 | + ∅ * s = ∅ := |
| 100 | +set.ext $ λ a, ⟨by {rintros ⟨_, _, _, _, rfl⟩, tauto}, false.elim⟩ |
| 101 | + |
| 102 | +lemma pointwise_mul_union [has_mul α] (s t u : set α) : |
| 103 | + s * (t ∪ u) = (s * t) ∪ (s * u) := |
| 104 | +begin |
| 105 | + ext a, split, |
| 106 | + { rintros ⟨_, _, _, H, rfl⟩, |
| 107 | + cases H; [left, right]; exact ⟨_, ‹_›, _, ‹_›, rfl⟩ }, |
| 108 | + { intro H, |
| 109 | + cases H with H H; |
| 110 | + { rcases H with ⟨_, _, _, _, rfl⟩, |
| 111 | + refine ⟨_, ‹_›, _, _, rfl⟩, |
| 112 | + erw mem_union, |
| 113 | + simp * } } |
| 114 | +end |
| 115 | + |
| 116 | +lemma union_pointwise_mul [has_mul α] (s t u : set α) : |
| 117 | + (s ∪ t) * u = (s * u) ∪ (t * u) := |
| 118 | +begin |
| 119 | + ext a, split, |
| 120 | + { rintros ⟨_, H, _, _, rfl⟩, |
| 121 | + cases H; [left, right]; exact ⟨_, ‹_›, _, ‹_›, rfl⟩ }, |
| 122 | + { intro H, |
| 123 | + cases H with H H; |
| 124 | + { rcases H with ⟨_, _, _, _, rfl⟩; |
| 125 | + refine ⟨_, _, _, ‹_›, rfl⟩; |
| 126 | + erw mem_union; |
| 127 | + simp * } } |
| 128 | +end |
| 129 | + |
| 130 | +def pointwise_mul_semiring [monoid α] : semiring (set α) := |
| 131 | +{ add := (⊔), |
| 132 | + zero := ∅, |
| 133 | + add_assoc := set.union_assoc, |
| 134 | + zero_add := set.empty_union, |
| 135 | + add_zero := set.union_empty, |
| 136 | + add_comm := set.union_comm, |
| 137 | + zero_mul := empty_pointwise_mul, |
| 138 | + mul_zero := pointwise_mul_empty, |
| 139 | + left_distrib := pointwise_mul_union, |
| 140 | + right_distrib := union_pointwise_mul, |
| 141 | + ..pointwise_mul_monoid } |
| 142 | + |
| 143 | +def pointwise_mul_comm_semiring [comm_monoid α] : comm_semiring (set α) := |
| 144 | +{ mul_comm := λ s t, set.ext $ λ a, |
| 145 | + by split; { rintros ⟨_, _, _, _, rfl⟩, rw mul_comm, exact ⟨_, ‹_›, _, ‹_›, rfl⟩ }, |
| 146 | + ..pointwise_mul_semiring } |
| 147 | + |
| 148 | +local attribute [instance] pointwise_mul_semiring |
| 149 | + |
| 150 | +variables [monoid α] [monoid β] [is_monoid_hom f] |
| 151 | + |
| 152 | +instance : is_semiring_hom (image f) := |
| 153 | +{ map_zero := image_empty _, |
| 154 | + map_one := by erw [image_singleton, is_monoid_hom.map_one f]; refl, |
| 155 | + map_add := image_union _, |
| 156 | + map_mul := λ s t, set.ext $ λ a, |
| 157 | + begin |
| 158 | + split, |
| 159 | + { rintros ⟨_, ⟨_, _, _, _, rfl⟩, rfl⟩, |
| 160 | + refine ⟨_, ⟨_, ‹_›, rfl⟩, _, ⟨_, ‹_›, rfl⟩, _⟩, |
| 161 | + apply is_monoid_hom.map_mul f }, |
| 162 | + { rintros ⟨_, ⟨_, _, rfl⟩, _, ⟨_, _, rfl⟩, rfl⟩, |
| 163 | + refine ⟨_, ⟨_, ‹_›, _, ‹_›, rfl⟩, _⟩, |
| 164 | + apply is_monoid_hom.map_mul f } |
| 165 | + end } |
| 166 | + |
| 167 | +end set |
0 commit comments