Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 504e1f6

Browse files
committed
feat(group_theory.nilpotent): add *_central_series_one G 1 = … simp lemmas (#11584)
analogously to the existing `_zero` lemmas
1 parent b630b8c commit 504e1f6

File tree

1 file changed

+11
-0
lines changed

1 file changed

+11
-0
lines changed

src/group_theory/nilpotent.lean

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -131,6 +131,14 @@ instance (n : ℕ) : normal (upper_central_series G n) := (upper_central_series_
131131

132132
@[simp] lemma upper_central_series_zero : upper_central_series G 0 = ⊥ := rfl
133133

134+
@[simp] lemma upper_central_series_one : upper_central_series G 1 = center G :=
135+
begin
136+
ext,
137+
simp only [upper_central_series, upper_central_series_aux, upper_central_series_step, center,
138+
set.center, mem_mk, mem_bot, set.mem_set_of_eq],
139+
exact forall_congr (λ y, by rw [mul_inv_eq_one, mul_inv_eq_iff_eq_mul, eq_comm]),
140+
end
141+
134142
/-- The `n+1`st term of the upper central series `H i` has underlying set equal to the `x` such
135143
that `⁅x,G⁆ ⊆ H n`-/
136144
lemma mem_upper_central_series_succ_iff (n : ℕ) (x : G) :
@@ -269,6 +277,9 @@ variable {G}
269277

270278
@[simp] lemma lower_central_series_zero : lower_central_series G 0 = ⊤ := rfl
271279

280+
@[simp] lemma lower_central_series_one : lower_central_series G 1 = commutator G :=
281+
by simp [lower_central_series]
282+
272283
lemma mem_lower_central_series_succ_iff (n : ℕ) (q : G) :
273284
q ∈ lower_central_series G (n + 1) ↔
274285
q ∈ closure {x | ∃ (p ∈ lower_central_series G n) (q ∈ (⊤ : subgroup G)), p * q * p⁻¹ * q⁻¹ = x}

0 commit comments

Comments
 (0)