Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 5080d64

Browse files
committed
feat(topology): add a few lemmas (#11607)
* add `homeomorph.preimage_interior`, `homeomorph.image_interior`, reorder lemmas; * add `is_open.smul₀` and `interior_smul₀`.
1 parent bd3b892 commit 5080d64

File tree

2 files changed

+20
-8
lines changed

2 files changed

+20
-8
lines changed

src/topology/algebra/mul_action.lean

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -252,6 +252,12 @@ homeomorph.smul (units.mk0 c hc)
252252
lemma is_open_map_smul₀ {c : G₀} (hc : c ≠ 0) : is_open_map (λ x : α, c • x) :=
253253
(homeomorph.smul_of_ne_zero c hc).is_open_map
254254

255+
lemma is_open.smul₀ {c : G₀} {s : set α} (hs : is_open s) (hc : c ≠ 0) : is_open (c • s) :=
256+
is_open_map_smul₀ hc s hs
257+
258+
lemma interior_smul₀ {c : G₀} (hc : c ≠ 0) (s : set α) : interior (c • s) = c • interior s :=
259+
((homeomorph.smul_of_ne_zero c hc).image_interior s).symm
260+
255261
/-- `smul` is a closed map in the second argument.
256262
257263
The lemma that `smul` is a closed map in the first argument (for a normed space over a complete

src/topology/homeomorph.lean

Lines changed: 14 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -199,20 +199,14 @@ h.quotient_map.is_open_preimage
199199
@[simp] lemma is_open_image (h : α ≃ₜ β) {s : set α} : is_open (h '' s) ↔ is_open s :=
200200
by rw [← preimage_symm, is_open_preimage]
201201

202+
protected lemma is_open_map (h : α ≃ₜ β) : is_open_map h := λ s, h.is_open_image.2
203+
202204
@[simp] lemma is_closed_preimage (h : α ≃ₜ β) {s : set β} : is_closed (h ⁻¹' s) ↔ is_closed s :=
203205
by simp only [← is_open_compl_iff, ← preimage_compl, is_open_preimage]
204206

205207
@[simp] lemma is_closed_image (h : α ≃ₜ β) {s : set α} : is_closed (h '' s) ↔ is_closed s :=
206208
by rw [← preimage_symm, is_closed_preimage]
207209

208-
lemma preimage_closure (h : α ≃ₜ β) (s : set β) : h ⁻¹' (closure s) = closure (h ⁻¹' s) :=
209-
by rw [h.embedding.closure_eq_preimage_closure_image, h.image_preimage]
210-
211-
lemma image_closure (h : α ≃ₜ β) (s : set α) : h '' (closure s) = closure (h '' s) :=
212-
by rw [← preimage_symm, preimage_closure]
213-
214-
protected lemma is_open_map (h : α ≃ₜ β) : is_open_map h := λ s, h.is_open_image.2
215-
216210
protected lemma is_closed_map (h : α ≃ₜ β) : is_closed_map h := λ s, h.is_closed_image.2
217211

218212
protected lemma open_embedding (h : α ≃ₜ β) : open_embedding h :=
@@ -221,6 +215,18 @@ open_embedding_of_embedding_open h.embedding h.is_open_map
221215
protected lemma closed_embedding (h : α ≃ₜ β) : closed_embedding h :=
222216
closed_embedding_of_embedding_closed h.embedding h.is_closed_map
223217

218+
lemma preimage_closure (h : α ≃ₜ β) (s : set β) : h ⁻¹' (closure s) = closure (h ⁻¹' s) :=
219+
h.is_open_map.preimage_closure_eq_closure_preimage h.continuous _
220+
221+
lemma image_closure (h : α ≃ₜ β) (s : set α) : h '' (closure s) = closure (h '' s) :=
222+
by rw [← preimage_symm, preimage_closure]
223+
224+
lemma preimage_interior (h : α ≃ₜ β) (s : set β) : h⁻¹' (interior s) = interior (h ⁻¹' s) :=
225+
h.is_open_map.preimage_interior_eq_interior_preimage h.continuous _
226+
227+
lemma image_interior (h : α ≃ₜ β) (s : set α) : h '' (interior s) = interior (h '' s) :=
228+
by rw [← preimage_symm, preimage_interior]
229+
224230
lemma preimage_frontier (h : α ≃ₜ β) (s : set β) : h ⁻¹' (frontier s) = frontier (h ⁻¹' s) :=
225231
h.is_open_map.preimage_frontier_eq_frontier_preimage h.continuous _
226232

0 commit comments

Comments
 (0)