@@ -199,20 +199,14 @@ h.quotient_map.is_open_preimage
199
199
@[simp] lemma is_open_image (h : α ≃ₜ β) {s : set α} : is_open (h '' s) ↔ is_open s :=
200
200
by rw [← preimage_symm, is_open_preimage]
201
201
202
+ protected lemma is_open_map (h : α ≃ₜ β) : is_open_map h := λ s, h.is_open_image.2
203
+
202
204
@[simp] lemma is_closed_preimage (h : α ≃ₜ β) {s : set β} : is_closed (h ⁻¹' s) ↔ is_closed s :=
203
205
by simp only [← is_open_compl_iff, ← preimage_compl, is_open_preimage]
204
206
205
207
@[simp] lemma is_closed_image (h : α ≃ₜ β) {s : set α} : is_closed (h '' s) ↔ is_closed s :=
206
208
by rw [← preimage_symm, is_closed_preimage]
207
209
208
- lemma preimage_closure (h : α ≃ₜ β) (s : set β) : h ⁻¹' (closure s) = closure (h ⁻¹' s) :=
209
- by rw [h.embedding.closure_eq_preimage_closure_image, h.image_preimage]
210
-
211
- lemma image_closure (h : α ≃ₜ β) (s : set α) : h '' (closure s) = closure (h '' s) :=
212
- by rw [← preimage_symm, preimage_closure]
213
-
214
- protected lemma is_open_map (h : α ≃ₜ β) : is_open_map h := λ s, h.is_open_image.2
215
-
216
210
protected lemma is_closed_map (h : α ≃ₜ β) : is_closed_map h := λ s, h.is_closed_image.2
217
211
218
212
protected lemma open_embedding (h : α ≃ₜ β) : open_embedding h :=
@@ -221,6 +215,18 @@ open_embedding_of_embedding_open h.embedding h.is_open_map
221
215
protected lemma closed_embedding (h : α ≃ₜ β) : closed_embedding h :=
222
216
closed_embedding_of_embedding_closed h.embedding h.is_closed_map
223
217
218
+ lemma preimage_closure (h : α ≃ₜ β) (s : set β) : h ⁻¹' (closure s) = closure (h ⁻¹' s) :=
219
+ h.is_open_map.preimage_closure_eq_closure_preimage h.continuous _
220
+
221
+ lemma image_closure (h : α ≃ₜ β) (s : set α) : h '' (closure s) = closure (h '' s) :=
222
+ by rw [← preimage_symm, preimage_closure]
223
+
224
+ lemma preimage_interior (h : α ≃ₜ β) (s : set β) : h⁻¹' (interior s) = interior (h ⁻¹' s) :=
225
+ h.is_open_map.preimage_interior_eq_interior_preimage h.continuous _
226
+
227
+ lemma image_interior (h : α ≃ₜ β) (s : set α) : h '' (interior s) = interior (h '' s) :=
228
+ by rw [← preimage_symm, preimage_interior]
229
+
224
230
lemma preimage_frontier (h : α ≃ₜ β) (s : set β) : h ⁻¹' (frontier s) = frontier (h ⁻¹' s) :=
225
231
h.is_open_map.preimage_frontier_eq_frontier_preimage h.continuous _
226
232
0 commit comments