@@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Kenji Nakagawa, Anne Baanen, Filippo A. E. Nuccio
5
5
-/
6
6
import algebra.algebra.subalgebra.pointwise
7
+ import algebraic_geometry.prime_spectrum.maximal
7
8
import algebraic_geometry.prime_spectrum.noetherian
8
9
import order.hom.basic
9
10
import ring_theory.dedekind_domain.basic
@@ -830,14 +831,13 @@ end
830
831
831
832
end is_dedekind_domain
832
833
833
- section height_one_spectrum
834
-
835
834
/-!
836
835
### Height one spectrum of a Dedekind domain
837
836
If `R` is a Dedekind domain of Krull dimension 1, the maximal ideals of `R` are exactly its nonzero
838
837
prime ideals.
839
838
We define `height_one_spectrum` and provide lemmas to recover the facts that prime ideals of height
840
- one are prime and irreducible. -/
839
+ one are prime and irreducible.
840
+ -/
841
841
842
842
namespace is_dedekind_domain
843
843
@@ -849,31 +849,36 @@ variables [is_domain R] [is_dedekind_domain R]
849
849
structure height_one_spectrum :=
850
850
(as_ideal : ideal R)
851
851
(is_prime : as_ideal.is_prime)
852
- (ne_bot : as_ideal ≠ ⊥)
852
+ (ne_bot : as_ideal ≠ ⊥)
853
+
854
+ attribute [instance] height_one_spectrum.is_prime
853
855
854
856
variables (v : height_one_spectrum R) {R}
855
857
856
- lemma height_one_spectrum.prime (v : height_one_spectrum R) : prime v.as_ideal :=
857
- ideal.prime_of_is_prime v.ne_bot v.is_prime
858
+ namespace height_one_spectrum
858
859
859
- lemma height_one_spectrum.irreducible (v : height_one_spectrum R) :
860
- irreducible v.as_ideal :=
861
- begin
862
- rw [unique_factorization_monoid.irreducible_iff_prime],
863
- apply v.prime,
864
- end
860
+ instance is_maximal : v.as_ideal.is_maximal := dimension_le_one v.as_ideal v.ne_bot v.is_prime
865
861
866
- lemma height_one_spectrum.associates_irreducible (v : height_one_spectrum R) :
867
- irreducible (associates.mk v.as_ideal) :=
868
- begin
869
- rw [associates.irreducible_mk _],
870
- apply v.irreducible,
871
- end
862
+ lemma prime : prime v.as_ideal := ideal.prime_of_is_prime v.ne_bot v.is_prime
872
863
873
- end is_dedekind_domain
864
+ lemma irreducible : irreducible v.as_ideal :=
865
+ unique_factorization_monoid.irreducible_iff_prime.mpr v.prime
866
+
867
+ lemma associates_irreducible : _root_.irreducible $ associates.mk v.as_ideal :=
868
+ (associates.irreducible_mk _).mpr v.irreducible
869
+
870
+ /-- An equivalence between the height one and maximal spectra for rings of Krull dimension 1. -/
871
+ def equiv_maximal_spectrum (hR : ¬is_field R) : height_one_spectrum R ≃ maximal_spectrum R :=
872
+ { to_fun := λ v, ⟨v.as_ideal, dimension_le_one v.as_ideal v.ne_bot v.is_prime⟩,
873
+ inv_fun := λ v,
874
+ ⟨v.as_ideal, v.is_maximal.is_prime, ring.ne_bot_of_is_maximal_of_not_is_field v.is_maximal hR⟩,
875
+ left_inv := λ ⟨_, _, _⟩, rfl,
876
+ right_inv := λ ⟨_, _⟩, rfl }
874
877
875
878
end height_one_spectrum
876
879
880
+ end is_dedekind_domain
881
+
877
882
section
878
883
879
884
open ideal
0 commit comments