@@ -299,7 +299,7 @@ begin
299
299
exact add_nonneg C.coe_nonneg ε0 .le,
300
300
have hs' := hs, rw [← map_add_left_nhds_zero x₀, mem_map] at hs',
301
301
filter_upwards [is_o_iff.1 (has_fderiv_at_iff_is_o_nhds_zero.1 hf) ε0 , hs'], intros y hy hys,
302
- have := hlip.norm_sub_le hys (mem_of_nhds hs), rw add_sub_cancel' at this ,
302
+ have := hlip.norm_sub_le hys (mem_of_mem_nhds hs), rw add_sub_cancel' at this ,
303
303
calc ∥f' y∥ ≤ ∥f (x₀ + y) - f x₀∥ + ∥f (x₀ + y) - f x₀ - f' y∥ : norm_le_insert _ _
304
304
... ≤ C * ∥y∥ + ε * ∥y∥ : add_le_add this hy
305
305
... = (C + ε) * ∥y∥ : (add_mul _ _ _).symm
@@ -359,7 +359,7 @@ begin
359
359
refine (has_fderiv_within_at_univ.2 hf).lim _ (univ_mem_sets' (λ _, trivial)) hc _,
360
360
assume U hU,
361
361
refine (eventually_ne_of_tendsto_norm_at_top hc (0 :𝕜)).mono (λ y hy, _),
362
- convert mem_of_nhds hU,
362
+ convert mem_of_mem_nhds hU,
363
363
dsimp only,
364
364
rw [← mul_smul, mul_inv_cancel hy, one_smul]
365
365
end
@@ -494,7 +494,7 @@ lemma differentiable_on_of_locally_differentiable_on
494
494
begin
495
495
assume x xs,
496
496
rcases h x xs with ⟨t, t_open, xt, ht⟩,
497
- exact (differentiable_within_at_inter (mem_nhds_sets t_open xt)).1 (ht x ⟨xs, xt⟩)
497
+ exact (differentiable_within_at_inter (is_open.mem_nhds t_open xt)).1 (ht x ⟨xs, xt⟩)
498
498
end
499
499
500
500
lemma fderiv_within_subset (st : s ⊆ t) (ht : unique_diff_within_at 𝕜 s x)
537
537
538
538
lemma fderiv_within_of_open (hs : is_open s) (hx : x ∈ s) :
539
539
fderiv_within 𝕜 f s x = fderiv 𝕜 f x :=
540
- fderiv_within_of_mem_nhds (mem_nhds_sets hs hx)
540
+ fderiv_within_of_mem_nhds (is_open.mem_nhds hs hx)
541
541
542
542
lemma fderiv_within_eq_fderiv (hs : unique_diff_within_at 𝕜 s x) (h : differentiable_at 𝕜 f x) :
543
543
fderiv_within 𝕜 f s x = fderiv 𝕜 f x :=
@@ -660,7 +660,7 @@ has_fderiv_at_filter.congr_of_eventually_eq h h₁ hx
660
660
661
661
lemma has_fderiv_at.congr_of_eventually_eq (h : has_fderiv_at f f' x)
662
662
(h₁ : f₁ =ᶠ[𝓝 x] f) : has_fderiv_at f₁ f' x :=
663
- has_fderiv_at_filter.congr_of_eventually_eq h h₁ (mem_of_nhds h₁ : _)
663
+ has_fderiv_at_filter.congr_of_eventually_eq h h₁ (mem_of_mem_nhds h₁ : _)
664
664
665
665
lemma differentiable_within_at.congr_mono (h : differentiable_within_at 𝕜 f s x)
666
666
(ht : ∀x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (h₁ : t ⊆ s) : differentiable_within_at 𝕜 f₁ t x :=
@@ -691,7 +691,7 @@ lemma differentiable_on_congr (h' : ∀x ∈ s, f₁ x = f x) :
691
691
lemma differentiable_at.congr_of_eventually_eq (h : differentiable_at 𝕜 f x) (hL : f₁ =ᶠ[𝓝 x] f) :
692
692
differentiable_at 𝕜 f₁ x :=
693
693
has_fderiv_at.differentiable_at
694
- (has_fderiv_at_filter.congr_of_eventually_eq h.has_fderiv_at hL (mem_of_nhds hL : _))
694
+ (has_fderiv_at_filter.congr_of_eventually_eq h.has_fderiv_at hL (mem_of_mem_nhds hL : _))
695
695
696
696
lemma differentiable_within_at.fderiv_within_congr_mono (h : differentiable_within_at 𝕜 f s x)
697
697
(hs : ∀x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (hxt : unique_diff_within_at 𝕜 t x) (h₁ : t ⊆ s) :
@@ -2118,7 +2118,7 @@ protected lemma is_open [complete_space E] : is_open (range (coe : (E ≃L[𝕜]
2118
2118
begin
2119
2119
nontriviality E,
2120
2120
rw [is_open_iff_mem_nhds, forall_range_iff],
2121
- refine λ e, mem_nhds_sets _ (mem_range_self _),
2121
+ refine λ e, is_open.mem_nhds _ (mem_range_self _),
2122
2122
let O : (E →L[𝕜] F) → (E →L[𝕜] E) := λ f, (e.symm : F →L[𝕜] E).comp f,
2123
2123
have h_O : continuous O := is_bounded_bilinear_map_comp.continuous_left,
2124
2124
convert units.is_open.preimage h_O using 1 ,
@@ -2134,7 +2134,7 @@ end
2134
2134
2135
2135
protected lemma nhds [complete_space E] (e : E ≃L[𝕜] F) :
2136
2136
(range (coe : (E ≃L[𝕜] F) → (E →L[𝕜] F))) ∈ 𝓝 (e : E →L[𝕜] F) :=
2137
- mem_nhds_sets continuous_linear_equiv.is_open (by simp)
2137
+ is_open.mem_nhds continuous_linear_equiv.is_open (by simp)
2138
2138
2139
2139
end continuous_linear_equiv
2140
2140
0 commit comments