Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 53a484e

Browse files
committed
chore(order/filter/small_sets): redefine, golf (#13672)
The new definition is defeq to the old one.
1 parent 42b9cdf commit 53a484e

File tree

1 file changed

+9
-34
lines changed

1 file changed

+9
-34
lines changed

src/order/filter/small_sets.lean

Lines changed: 9 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ Copyright (c) 2022 Patrick Massot. All rights reserved.
33
Released under Apache 2.0 license as described in the file LICENSE.
44
Authors: Patrick Massot, Floris van Doorn
55
-/
6-
import order.filter.bases
6+
import order.filter.lift
77

88
/-!
99
# The filter of small sets
@@ -25,44 +25,19 @@ variables {α β : Type*} {ι : Sort*}
2525

2626
namespace filter
2727

28-
/-- The filter `f.small_sets` is the largest filter containing all powersets of members of `f`.
29-
Note: `𝓟` is the principal filter and `𝒫` is the powerset. -/
30-
def small_sets (f : filter α) : filter (set α) :=
31-
⨅ t ∈ f, 𝓟 (𝒫 t)
28+
/-- The filter `f.small_sets` is the largest filter containing all powersets of members of `f`. -/
29+
def small_sets (f : filter α) : filter (set α) := f.lift' powerset
3230

3331
lemma small_sets_eq_generate {f : filter α} : f.small_sets = generate (powerset '' f.sets) :=
34-
by simp_rw [generate_eq_binfi, small_sets, infi_image, filter.mem_sets]
35-
36-
lemma has_basis_small_sets (f : filter α) :
37-
has_basis f.small_sets (λ t : set α, t ∈ f) powerset :=
38-
begin
39-
apply has_basis_binfi_principal _ _,
40-
{ rintros u (u_in : u ∈ f) v (v_in : v ∈ f),
41-
use [u ∩ v, inter_mem u_in v_in],
42-
split,
43-
rintros w (w_sub : w ⊆ u ∩ v),
44-
exact w_sub.trans (inter_subset_left u v),
45-
rintros w (w_sub : w ⊆ u ∩ v),
46-
exact w_sub.trans (inter_subset_right u v) },
47-
{ use univ,
48-
exact univ_mem },
49-
end
32+
by { simp_rw [generate_eq_binfi, small_sets, infi_image], refl }
5033

5134
lemma has_basis.small_sets {f : filter α} {p : ι → Prop} {s : ι → set α}
5235
(h : has_basis f p s) : has_basis f.small_sets p (λ i, 𝒫 (s i)) :=
53-
begin
54-
intros t,
55-
rw f.has_basis_small_sets.mem_iff,
56-
split,
57-
{ rintro ⟨u, u_in, hu : {v : set α | v ⊆ u} ⊆ t⟩,
58-
rcases h.mem_iff.mp u_in with ⟨i, hpi, hiu⟩,
59-
use [i, hpi],
60-
apply subset.trans _ hu,
61-
intros v hv x hx,
62-
exact hiu (hv hx) },
63-
{ rintro ⟨i, hi, hui⟩,
64-
exact ⟨s i, h.mem_of_mem hi, hui⟩ }
65-
end
36+
h.lift' monotone_powerset
37+
38+
lemma has_basis_small_sets (f : filter α) :
39+
has_basis f.small_sets (λ t : set α, t ∈ f) powerset :=
40+
f.basis_sets.small_sets
6641

6742
/-- `g` converges to `f.small_sets` if for all `s ∈ f`, eventually we have `g x ⊆ s`. -/
6843
lemma tendsto_small_sets_iff {la : filter α} {lb : filter β} {f : α → set β} :

0 commit comments

Comments
 (0)