@@ -3,7 +3,7 @@ Copyright (c) 2022 Patrick Massot. All rights reserved.
3
3
Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Patrick Massot, Floris van Doorn
5
5
-/
6
- import order.filter.bases
6
+ import order.filter.lift
7
7
8
8
/-!
9
9
# The filter of small sets
@@ -25,44 +25,19 @@ variables {α β : Type*} {ι : Sort*}
25
25
26
26
namespace filter
27
27
28
- /-- The filter `f.small_sets` is the largest filter containing all powersets of members of `f`.
29
- Note: `𝓟` is the principal filter and `𝒫` is the powerset. -/
30
- def small_sets (f : filter α) : filter (set α) :=
31
- ⨅ t ∈ f, 𝓟 (𝒫 t)
28
+ /-- The filter `f.small_sets` is the largest filter containing all powersets of members of `f`. -/
29
+ def small_sets (f : filter α) : filter (set α) := f.lift' powerset
32
30
33
31
lemma small_sets_eq_generate {f : filter α} : f.small_sets = generate (powerset '' f.sets) :=
34
- by simp_rw [generate_eq_binfi, small_sets, infi_image, filter.mem_sets]
35
-
36
- lemma has_basis_small_sets (f : filter α) :
37
- has_basis f.small_sets (λ t : set α, t ∈ f) powerset :=
38
- begin
39
- apply has_basis_binfi_principal _ _,
40
- { rintros u (u_in : u ∈ f) v (v_in : v ∈ f),
41
- use [u ∩ v, inter_mem u_in v_in],
42
- split,
43
- rintros w (w_sub : w ⊆ u ∩ v),
44
- exact w_sub.trans (inter_subset_left u v),
45
- rintros w (w_sub : w ⊆ u ∩ v),
46
- exact w_sub.trans (inter_subset_right u v) },
47
- { use univ,
48
- exact univ_mem },
49
- end
32
+ by { simp_rw [generate_eq_binfi, small_sets, infi_image], refl }
50
33
51
34
lemma has_basis.small_sets {f : filter α} {p : ι → Prop } {s : ι → set α}
52
35
(h : has_basis f p s) : has_basis f.small_sets p (λ i, 𝒫 (s i)) :=
53
- ⟨begin
54
- intros t,
55
- rw f.has_basis_small_sets.mem_iff,
56
- split,
57
- { rintro ⟨u, u_in, hu : {v : set α | v ⊆ u} ⊆ t⟩,
58
- rcases h.mem_iff.mp u_in with ⟨i, hpi, hiu⟩,
59
- use [i, hpi],
60
- apply subset.trans _ hu,
61
- intros v hv x hx,
62
- exact hiu (hv hx) },
63
- { rintro ⟨i, hi, hui⟩,
64
- exact ⟨s i, h.mem_of_mem hi, hui⟩ }
65
- end ⟩
36
+ h.lift' monotone_powerset
37
+
38
+ lemma has_basis_small_sets (f : filter α) :
39
+ has_basis f.small_sets (λ t : set α, t ∈ f) powerset :=
40
+ f.basis_sets.small_sets
66
41
67
42
/-- `g` converges to `f.small_sets` if for all `s ∈ f`, eventually we have `g x ⊆ s`. -/
68
43
lemma tendsto_small_sets_iff {la : filter α} {lb : filter β} {f : α → set β} :
0 commit comments