@@ -169,14 +169,15 @@ These will hold for any matrix over a commutative ring.
169
169
matrix replacing a column with a basis vector, since it allows us to use
170
170
facts about the `cramer` map.
171
171
-/
172
- def adjugate (A : matrix n n α) : matrix n n α := λ i, cramer Aᵀ (pi.single i 1 )
172
+ def adjugate (A : matrix n n α) : matrix n n α :=
173
+ of $ λ i, cramer Aᵀ (pi.single i 1 )
173
174
174
175
lemma adjugate_def (A : matrix n n α) :
175
- adjugate A = λ i, cramer Aᵀ (pi.single i 1 ) := rfl
176
+ adjugate A = of ( λ i, cramer Aᵀ (pi.single i 1 ) ) := rfl
176
177
177
178
lemma adjugate_apply (A : matrix n n α) (i j : n) :
178
179
adjugate A i j = (A.update_row j (pi.single i 1 )).det :=
179
- by { rw adjugate_def, simp only, rw [ cramer_apply, update_column_transpose, det_transpose], }
180
+ by rw [ adjugate_def, of_apply, cramer_apply, update_column_transpose, det_transpose]
180
181
181
182
lemma adjugate_transpose (A : matrix n n α) : (adjugate A)ᵀ = adjugate (Aᵀ) :=
182
183
begin
@@ -282,7 +283,7 @@ by { ext, simp [adjugate_def, matrix.one_apply, pi.single_apply, eq_comm] }
282
283
adjugate (diagonal v) = diagonal (λ i, ∏ j in finset.univ.erase i, v j) :=
283
284
begin
284
285
ext,
285
- simp only [adjugate_def, cramer_apply, diagonal_transpose],
286
+ simp only [adjugate_def, cramer_apply, diagonal_transpose, of_apply ],
286
287
obtain rfl | hij := eq_or_ne i j,
287
288
{ rw [diagonal_apply_eq, diagonal_update_column_single, det_diagonal,
288
289
prod_update_of_mem (finset.mem_univ _), sdiff_singleton_eq_erase, one_mul] },
0 commit comments