Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 565310f

Browse files
committed
feat(data/nat/cast): pi.coe_nat and pi.nat_apply (#7492)
1 parent 190d4e2 commit 565310f

File tree

2 files changed

+31
-0
lines changed

2 files changed

+31
-0
lines changed

src/data/int/cast.lean

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -270,3 +270,19 @@ end ring_hom
270270

271271
@[simp, norm_cast] theorem int.cast_id (n : ℤ) : ↑n = n :=
272272
((ring_hom.id ℤ).eq_int_cast n).symm
273+
274+
namespace pi
275+
276+
variables {α β : Type*}
277+
278+
lemma int_apply [has_zero β] [has_one β] [has_add β] [has_neg β] :
279+
∀ (n : ℤ) (a : α), (n : α → β) a = n
280+
| (n:ℕ) a := pi.nat_apply n a
281+
| -[1+n] a :=
282+
by rw [cast_neg_succ_of_nat, cast_neg_succ_of_nat, neg_apply, add_apply, one_apply, nat_apply]
283+
284+
@[simp] lemma coe_int [has_zero β] [has_one β] [has_add β] [has_neg β] (n : ℤ) :
285+
(n : α → β) = λ _, n :=
286+
by { ext, rw pi.int_apply }
287+
288+
end pi

src/data/nat/cast.lean

Lines changed: 15 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -321,3 +321,18 @@ begin
321321
end
322322

323323
end with_top
324+
325+
namespace pi
326+
327+
variables {α β : Type*}
328+
329+
lemma nat_apply [has_zero β] [has_one β] [has_add β] :
330+
∀ (n : ℕ) (a : α), (n : α → β) a = n
331+
| 0 a := rfl
332+
| (n+1) a := by rw [nat.cast_succ, nat.cast_succ, add_apply, nat_apply, one_apply]
333+
334+
@[simp] lemma coe_nat [has_zero β] [has_one β] [has_add β] (n : ℕ) :
335+
(n : α → β) = λ _, n :=
336+
by { ext, rw pi.nat_apply }
337+
338+
end pi

0 commit comments

Comments
 (0)