Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 5778df8

Browse files
committed
chore(analysis/complex/circle): upgrade exp_map_circle to continuous_map (#9942)
1 parent 2026a5f commit 5778df8

File tree

1 file changed

+15
-8
lines changed

1 file changed

+15
-8
lines changed

src/analysis/complex/circle.lean

Lines changed: 15 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -3,8 +3,8 @@ Copyright (c) 2021 Heather Macbeth. All rights reserved.
33
Released under Apache 2.0 license as described in the file LICENSE.
44
Authors: Heather Macbeth
55
-/
6-
import analysis.complex.basic
7-
import data.complex.exponential
6+
import analysis.special_functions.exp
7+
import topology.continuous_function.basic
88

99
/-!
1010
# The circle
@@ -86,16 +86,23 @@ instance : topological_group circle :=
8686
complex.conj_cle.continuous.comp continuous_subtype_coe }
8787

8888
/-- The map `λ t, exp (t * I)` from `ℝ` to the unit circle in `ℂ`. -/
89-
def exp_map_circle (t : ℝ) : circle :=
90-
⟨exp (t * I), by simp [exp_mul_I, abs_cos_add_sin_mul_I]⟩
89+
def exp_map_circle : C(ℝ, circle) :=
90+
{ to_fun := λ t, ⟨exp (t * I), by simp [exp_mul_I, abs_cos_add_sin_mul_I]⟩ }
9191

9292
@[simp] lemma exp_map_circle_apply (t : ℝ) : ↑(exp_map_circle t) = complex.exp (t * complex.I) :=
9393
rfl
9494

95+
@[simp] lemma exp_map_circle_zero : exp_map_circle 0 = 1 :=
96+
subtype.ext $ by rw [exp_map_circle_apply, of_real_zero, zero_mul, exp_zero, submonoid.coe_one]
97+
98+
@[simp] lemma exp_map_circle_add (x y : ℝ) :
99+
exp_map_circle (x + y) = exp_map_circle x * exp_map_circle y :=
100+
subtype.ext $ by simp only [exp_map_circle_apply, submonoid.coe_mul, of_real_add, add_mul,
101+
complex.exp_add]
102+
95103
/-- The map `λ t, exp (t * I)` from `ℝ` to the unit circle in `ℂ`, considered as a homomorphism of
96104
groups. -/
97105
def exp_map_circle_hom : ℝ →+ (additive circle) :=
98-
{ to_fun := exp_map_circle,
99-
map_zero' := by { rw exp_map_circle, convert of_mul_one, simp },
100-
map_add' := λ x y, show exp_map_circle (x + y) = (exp_map_circle x) * (exp_map_circle y),
101-
from subtype.ext $ by simp [exp_map_circle, exp_add, add_mul] }
106+
{ to_fun := additive.of_mul ∘ exp_map_circle,
107+
map_zero' := exp_map_circle_zero,
108+
map_add' := exp_map_circle_add }

0 commit comments

Comments
 (0)