@@ -129,16 +129,21 @@ lemma inner_content_Union_nat [t2_space G] {μ : compacts G → ennreal}
129
129
inner_content μ ⟨⋃ (i : ℕ), U i, is_open_Union hU⟩ ≤ ∑' (i : ℕ), inner_content μ ⟨U i, hU i⟩ :=
130
130
by { have := inner_content_Sup_nat h1 h2 (λ i, ⟨U i, hU i⟩), rwa [opens.supr_def] at this }
131
131
132
- lemma is_left_invariant_inner_content [group G] [topological_group G] {μ : compacts G → ennreal}
133
- (h : ∀ (g : G) { K : compacts G} , μ (K.map _ $ continuous_mul_left g ) = μ K) (g : G)
134
- (U : opens G) : inner_content μ (U.comap $ continuous_mul_left g ) = inner_content μ U :=
132
+ lemma inner_content_comap {μ : compacts G → ennreal} (f : G ≃ₜ G)
133
+ (h : ∀ ⦃ K : compacts G⦄ , μ (K.map f f.continuous ) = μ K) (U : opens G) :
134
+ inner_content μ (U.comap f.continuous ) = inner_content μ U :=
135
135
begin
136
- refine supr_congr _ ((compacts.equiv (homeomorph.mul_left g) ).surjective) _,
136
+ refine supr_congr _ ((compacts.equiv f ).surjective) _,
137
137
intro K, refine supr_congr_Prop image_subset_iff _,
138
138
intro hK, simp only [equiv.coe_fn_mk, subtype.mk_eq_mk, ennreal.coe_eq_coe, compacts.equiv],
139
- apply h
139
+ apply h,
140
140
end
141
141
142
+ lemma is_left_invariant_inner_content [group G] [topological_group G] {μ : compacts G → ennreal}
143
+ (h : ∀ (g : G) {K : compacts G}, μ (K.map _ $ continuous_mul_left g) = μ K) (g : G)
144
+ (U : opens G) : inner_content μ (U.comap $ continuous_mul_left g) = inner_content μ U :=
145
+ by convert inner_content_comap (homeomorph.mul_left g) (λ K, h g) U
146
+
142
147
lemma inner_content_pos [t2_space G] [group G] [topological_group G] {μ : compacts G → ennreal}
143
148
(h1 : μ ⊥ = 0 )
144
149
(h2 : ∀ (K₁ K₂ : compacts G), μ (K₁ ⊔ K₂) ≤ μ K₁ + μ K₂)
@@ -185,6 +190,10 @@ begin
185
190
{ exact inner_content_mono }
186
191
end
187
192
193
+ lemma of_content_eq_infi (A : set G) :
194
+ of_content μ h1 A = ⨅ (U : set G) (hU : is_open U) (h : A ⊆ U), inner_content μ ⟨U, hU⟩ :=
195
+ induced_outer_measure_eq_infi _ (inner_content_Union_nat h1 h2) inner_content_mono A
196
+
188
197
lemma of_content_interior_compacts (h3 : ∀ (K₁ K₂ : compacts G), K₁.1 ⊆ K₂.1 → μ K₁ ≤ μ K₂)
189
198
(K : compacts G) : of_content μ h1 (interior K.1 ) ≤ μ K :=
190
199
le_trans (le_of_eq $ of_content_opens h2 (opens.interior K.1 ))
@@ -205,6 +214,29 @@ begin
205
214
exact ⟨⟨U, hU⟩, h2U, h3U⟩, swap, exact inner_content_Union_nat h1 h2
206
215
end
207
216
217
+ lemma of_content_preimage (f : G ≃ₜ G) (h : ∀ ⦃K : compacts G⦄, μ (K.map f f.continuous) = μ K)
218
+ (A : set G) : of_content μ h1 (f ⁻¹' A) = of_content μ h1 A :=
219
+ begin
220
+ refine induced_outer_measure_preimage _ (inner_content_Union_nat h1 h2) inner_content_mono _
221
+ (λ s, f.is_open_preimage) _,
222
+ intros s hs, convert inner_content_comap f h ⟨s, hs⟩
223
+ end
224
+
225
+ lemma is_left_invariant_of_content [group G] [topological_group G]
226
+ (h : ∀ (g : G) {K : compacts G}, μ (K.map _ $ continuous_mul_left g) = μ K) (g : G)
227
+ (A : set G) : of_content μ h1 ((λ h, g * h) ⁻¹' A) = of_content μ h1 A :=
228
+ by convert of_content_preimage h2 (homeomorph.mul_left g) (λ K, h g) A
229
+
230
+ lemma of_content_caratheodory (A : set G) :
231
+ (of_content μ h1).caratheodory.is_measurable A ↔ ∀ (U : opens G),
232
+ of_content μ h1 (U ∩ A) + of_content μ h1 (U \ A) ≤ of_content μ h1 U :=
233
+ begin
234
+ dsimp [opens], rw subtype.forall,
235
+ apply induced_outer_measure_caratheodory,
236
+ apply inner_content_Union_nat h1 h2,
237
+ apply inner_content_mono'
238
+ end
239
+
208
240
lemma of_content_pos_of_is_open [group G] [topological_group G]
209
241
(h3 : ∀ (g : G) {K : compacts G}, μ (K.map _ $ continuous_mul_left g) = μ K)
210
242
(K : compacts G) (hK : 0 < μ K) {U : set G} (h1U : is_open U) (h2U : U.nonempty) :
0 commit comments