@@ -2371,7 +2371,7 @@ variables {𝔸 𝔸' : Type*} [normed_ring 𝔸] [normed_comm_ring 𝔸'] [norm
2371
2371
theorem has_strict_fderiv_at.mul' {x : E} (ha : has_strict_fderiv_at a a' x)
2372
2372
(hb : has_strict_fderiv_at b b' x) :
2373
2373
has_strict_fderiv_at (λ y, a y * b y) (a x • b' + a'.smul_right (b x)) x :=
2374
- ((continuous_linear_map.lmul 𝕜 𝔸).is_bounded_bilinear_map.has_strict_fderiv_at (a x, b x)).comp x
2374
+ ((continuous_linear_map.mul 𝕜 𝔸).is_bounded_bilinear_map.has_strict_fderiv_at (a x, b x)).comp x
2375
2375
(ha.prod hb)
2376
2376
2377
2377
theorem has_strict_fderiv_at.mul
@@ -2382,7 +2382,7 @@ by { convert hc.mul' hd, ext z, apply mul_comm }
2382
2382
theorem has_fderiv_within_at.mul'
2383
2383
(ha : has_fderiv_within_at a a' s x) (hb : has_fderiv_within_at b b' s x) :
2384
2384
has_fderiv_within_at (λ y, a y * b y) (a x • b' + a'.smul_right (b x)) s x :=
2385
- ((continuous_linear_map.lmul 𝕜 𝔸).is_bounded_bilinear_map.has_fderiv_at
2385
+ ((continuous_linear_map.mul 𝕜 𝔸).is_bounded_bilinear_map.has_fderiv_at
2386
2386
(a x, b x)).comp_has_fderiv_within_at x (ha.prod hb)
2387
2387
2388
2388
theorem has_fderiv_within_at.mul
@@ -2393,7 +2393,7 @@ by { convert hc.mul' hd, ext z, apply mul_comm }
2393
2393
theorem has_fderiv_at.mul'
2394
2394
(ha : has_fderiv_at a a' x) (hb : has_fderiv_at b b' x) :
2395
2395
has_fderiv_at (λ y, a y * b y) (a x • b' + a'.smul_right (b x)) x :=
2396
- ((continuous_linear_map.lmul 𝕜 𝔸).is_bounded_bilinear_map.has_fderiv_at (a x, b x)).comp x
2396
+ ((continuous_linear_map.mul 𝕜 𝔸).is_bounded_bilinear_map.has_fderiv_at (a x, b x)).comp x
2397
2397
(ha.prod hb)
2398
2398
2399
2399
theorem has_fderiv_at.mul (hc : has_fderiv_at c c' x) (hd : has_fderiv_at d d' x) :
@@ -2458,23 +2458,23 @@ lemma fderiv_mul (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜
2458
2458
2459
2459
theorem has_strict_fderiv_at.mul_const' (ha : has_strict_fderiv_at a a' x) (b : 𝔸) :
2460
2460
has_strict_fderiv_at (λ y, a y * b) (a'.smul_right b) x :=
2461
- (((continuous_linear_map.lmul 𝕜 𝔸).flip b).has_strict_fderiv_at).comp x ha
2461
+ (((continuous_linear_map.mul 𝕜 𝔸).flip b).has_strict_fderiv_at).comp x ha
2462
2462
2463
2463
theorem has_strict_fderiv_at.mul_const (hc : has_strict_fderiv_at c c' x) (d : 𝔸') :
2464
2464
has_strict_fderiv_at (λ y, c y * d) (d • c') x :=
2465
2465
by { convert hc.mul_const' d, ext z, apply mul_comm }
2466
2466
2467
2467
theorem has_fderiv_within_at.mul_const' (ha : has_fderiv_within_at a a' s x) (b : 𝔸) :
2468
2468
has_fderiv_within_at (λ y, a y * b) (a'.smul_right b) s x :=
2469
- (((continuous_linear_map.lmul 𝕜 𝔸).flip b).has_fderiv_at).comp_has_fderiv_within_at x ha
2469
+ (((continuous_linear_map.mul 𝕜 𝔸).flip b).has_fderiv_at).comp_has_fderiv_within_at x ha
2470
2470
2471
2471
theorem has_fderiv_within_at.mul_const (hc : has_fderiv_within_at c c' s x) (d : 𝔸') :
2472
2472
has_fderiv_within_at (λ y, c y * d) (d • c') s x :=
2473
2473
by { convert hc.mul_const' d, ext z, apply mul_comm }
2474
2474
2475
2475
theorem has_fderiv_at.mul_const' (ha : has_fderiv_at a a' x) (b : 𝔸) :
2476
2476
has_fderiv_at (λ y, a y * b) (a'.smul_right b) x :=
2477
- (((continuous_linear_map.lmul 𝕜 𝔸).flip b).has_fderiv_at).comp x ha
2477
+ (((continuous_linear_map.mul 𝕜 𝔸).flip b).has_fderiv_at).comp x ha
2478
2478
2479
2479
theorem has_fderiv_at.mul_const (hc : has_fderiv_at c c' x) (d : 𝔸') :
2480
2480
has_fderiv_at (λ y, c y * d) (d • c') x :=
@@ -2517,16 +2517,16 @@ lemma fderiv_mul_const (hc : differentiable_at 𝕜 c x) (d : 𝔸') :
2517
2517
2518
2518
theorem has_strict_fderiv_at.const_mul (ha : has_strict_fderiv_at a a' x) (b : 𝔸) :
2519
2519
has_strict_fderiv_at (λ y, b * a y) (b • a') x :=
2520
- (((continuous_linear_map.lmul 𝕜 𝔸) b).has_strict_fderiv_at).comp x ha
2520
+ (((continuous_linear_map.mul 𝕜 𝔸) b).has_strict_fderiv_at).comp x ha
2521
2521
2522
2522
theorem has_fderiv_within_at.const_mul
2523
2523
(ha : has_fderiv_within_at a a' s x) (b : 𝔸) :
2524
2524
has_fderiv_within_at (λ y, b * a y) (b • a') s x :=
2525
- (((continuous_linear_map.lmul 𝕜 𝔸) b).has_fderiv_at).comp_has_fderiv_within_at x ha
2525
+ (((continuous_linear_map.mul 𝕜 𝔸) b).has_fderiv_at).comp_has_fderiv_within_at x ha
2526
2526
2527
2527
theorem has_fderiv_at.const_mul (ha : has_fderiv_at a a' x) (b : 𝔸) :
2528
2528
has_fderiv_at (λ y, b * a y) (b • a') x :=
2529
- (((continuous_linear_map.lmul 𝕜 𝔸) b).has_fderiv_at).comp x ha
2529
+ (((continuous_linear_map.mul 𝕜 𝔸) b).has_fderiv_at).comp x ha
2530
2530
2531
2531
lemma differentiable_within_at.const_mul
2532
2532
(ha : differentiable_within_at 𝕜 a s x) (b : 𝔸) :
@@ -2563,7 +2563,7 @@ open normed_ring continuous_linear_map ring
2563
2563
/-- At an invertible element `x` of a normed algebra `R`, the Fréchet derivative of the inversion
2564
2564
operation is the linear map `λ t, - x⁻¹ * t * x⁻¹`. -/
2565
2565
lemma has_fderiv_at_ring_inverse (x : Rˣ) :
2566
- has_fderiv_at ring.inverse (-lmul_left_right 𝕜 R ↑x⁻¹ ↑x⁻¹) x :=
2566
+ has_fderiv_at ring.inverse (-mul_left_right 𝕜 R ↑x⁻¹ ↑x⁻¹) x :=
2567
2567
begin
2568
2568
have h_is_o : (λ (t : R), inverse (↑x + t) - ↑x⁻¹ + ↑x⁻¹ * t * ↑x⁻¹) =o[𝓝 0 ] (λ (t : R), t),
2569
2569
{ refine (inverse_add_norm_diff_second_order x).trans_is_o ((is_o_norm_norm).mp _),
@@ -2577,15 +2577,15 @@ begin
2577
2577
simp only [has_fderiv_at, has_fderiv_at_filter],
2578
2578
convert h_is_o.comp_tendsto h_lim,
2579
2579
ext y,
2580
- simp only [coe_comp', function.comp_app, lmul_left_right_apply , neg_apply, inverse_unit x,
2580
+ simp only [coe_comp', function.comp_app, mul_left_right_apply , neg_apply, inverse_unit x,
2581
2581
units.inv_mul, add_sub_cancel'_right, mul_sub, sub_mul, one_mul, sub_neg_eq_add]
2582
2582
end
2583
2583
2584
2584
lemma differentiable_at_inverse (x : Rˣ) : differentiable_at 𝕜 (@ring.inverse R _) x :=
2585
2585
(has_fderiv_at_ring_inverse x).differentiable_at
2586
2586
2587
2587
lemma fderiv_inverse (x : Rˣ) :
2588
- fderiv 𝕜 (@ring.inverse R _) x = - lmul_left_right 𝕜 R ↑x⁻¹ ↑x⁻¹ :=
2588
+ fderiv 𝕜 (@ring.inverse R _) x = - mul_left_right 𝕜 R ↑x⁻¹ ↑x⁻¹ :=
2589
2589
(has_fderiv_at_ring_inverse x).fderiv
2590
2590
2591
2591
end algebra_inverse
0 commit comments