Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 593938c

Browse files
jcommelinChrisHughes24
authored andcommitted
chore(ring_theory/algebra): simp-lemmas for alg_hom.to_linear_map (#1062)
* chore(ring_theory/algebra): simp-lemmas for alg_hom.to_linear_map From the perfectoid project. * Stupid error * Update src/ring_theory/algebra.lean Co-Authored-By: Chris Hughes <33847686+ChrisHughes24@users.noreply.github.com>
1 parent d001abf commit 593938c

File tree

1 file changed

+6
-0
lines changed

1 file changed

+6
-0
lines changed

src/ring_theory/algebra.lean

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -205,12 +205,18 @@ protected def id : A →ₐ[R] A :=
205205
{ to_fun := id, commutes' := λ _, rfl }
206206
variables {R A}
207207

208+
@[simp] lemma id_to_linear_map :
209+
(alg_hom.id R A).to_linear_map = @linear_map.id R A _ _ _ := rfl
210+
208211
@[simp] lemma id_apply (p : A) : alg_hom.id R A p = p := rfl
209212

210213
def comp (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) : A →ₐ C :=
211214
{ to_fun := φ₁ ∘ φ₂,
212215
commutes' := λ r, by rw [function.comp_apply, φ₂.commutes, φ₁.commutes] }
213216

217+
@[simp] lemma comp_to_linear_map (f : A →ₐ[R] B) (g : B →ₐ[R] C) :
218+
(g.comp f).to_linear_map = g.to_linear_map.comp f.to_linear_map := rfl
219+
214220
@[simp] lemma comp_apply (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) (p : A) :
215221
φ₁.comp φ₂ p = φ₁ (φ₂ p) := rfl
216222

0 commit comments

Comments
 (0)