@@ -392,7 +392,7 @@ lemma empty_in_sets_eq_bot {f : filter α} : ∅ ∈ f ↔ f = ⊥ :=
392
392
⟨assume h, bot_unique $ assume s _, mem_sets_of_superset h (empty_subset s),
393
393
assume : f = ⊥, this.symm ▸ mem_bot_sets⟩
394
394
395
- lemma inhabited_of_mem_sets {f : filter α} {s : set α} (hf : f ≠ ⊥) (hs : s ∈ f) :
395
+ lemma nonempty_of_mem_sets {f : filter α} {s : set α} (hf : f ≠ ⊥) (hs : s ∈ f) :
396
396
s.nonempty :=
397
397
have ∅ ∉ f, from assume h, hf $ empty_in_sets_eq_bot.mp h,
398
398
have s ≠ ∅, from assume h, this (h ▸ hs),
@@ -1054,15 +1054,15 @@ forall_sets_ne_empty_iff_ne_bot.mp $ assume s ⟨t, ht, t_s⟩,
1054
1054
lemma comap_ne_bot_of_range_mem {f : filter β} {m : α → β}
1055
1055
(hf : f ≠ ⊥) (hm : range m ∈ f) : comap m f ≠ ⊥ :=
1056
1056
comap_ne_bot $ assume t ht,
1057
- let ⟨_, ha, a, rfl⟩ := inhabited_of_mem_sets hf (inter_mem_sets ht hm)
1057
+ let ⟨_, ha, a, rfl⟩ := nonempty_of_mem_sets hf (inter_mem_sets ht hm)
1058
1058
in ⟨a, ha⟩
1059
1059
1060
1060
lemma comap_inf_principal_ne_bot_of_image_mem {f : filter β} {m : α → β}
1061
1061
(hf : f ≠ ⊥) {s : set α} (hs : m '' s ∈ f) : (comap m f ⊓ principal s) ≠ ⊥ :=
1062
1062
begin
1063
1063
refine compl_compl s ▸ mt mem_sets_of_eq_bot _,
1064
1064
rintros ⟨t, ht, hts⟩,
1065
- rcases inhabited_of_mem_sets hf (inter_mem_sets hs ht) with ⟨_, ⟨x, hxs, rfl⟩, hxt⟩,
1065
+ rcases nonempty_of_mem_sets hf (inter_mem_sets hs ht) with ⟨_, ⟨x, hxs, rfl⟩, hxt⟩,
1066
1066
exact absurd hxs (hts hxt)
1067
1067
end
1068
1068
@@ -1999,7 +1999,7 @@ lemma exists_ultrafilter (h : f ≠ ⊥) : ∃u, u ≤ f ∧ is_ultrafilter u :=
1999
1999
let
2000
2000
τ := {f' // f' ≠ ⊥ ∧ f' ≤ f},
2001
2001
r : τ → τ → Prop := λt₁ t₂, t₂.val ≤ t₁.val,
2002
- ⟨a, ha⟩ := inhabited_of_mem_sets h univ_mem_sets,
2002
+ ⟨a, ha⟩ := nonempty_of_mem_sets h univ_mem_sets,
2003
2003
top : τ := ⟨f, h, le_refl f⟩,
2004
2004
sup : Π(c:set τ), chain r c → τ :=
2005
2005
λc hc, ⟨⨅a:{a:τ // a ∈ insert top c}, a.val.val,
0 commit comments