@@ -310,8 +310,7 @@ lemma is_lub.union [semilattice_sup γ] {a b : γ} {s t : set γ}
310
310
(hs : is_lub s a) (ht : is_lub t b) :
311
311
is_lub (s ∪ t) (a ⊔ b) :=
312
312
⟨λ c h, h.cases_on (λ h, le_sup_of_le_left $ hs.left h) (λ h, le_sup_of_le_right $ ht.left h),
313
- assume c hc, sup_le
314
- (hs.right $ assume d hd, hc $ or.inl hd) (ht.right $ assume d hd, hc $ or.inr hd)⟩
313
+ λ c hc, sup_le (hs.right $ λ d hd, hc $ or.inl hd) (ht.right $ λ d hd, hc $ or.inr hd)⟩
315
314
316
315
/-- If `a` is the greatest lower bound of `s` and `b` is the greatest lower bound of `t`,
317
316
then `a ⊓ b` is the greatest lower bound of `s ∪ t`. -/
@@ -622,9 +621,7 @@ lemma is_lub_empty [preorder γ] [order_bot γ] : is_lub ∅ (⊥:γ) := @is_glb
622
621
623
622
lemma is_lub.nonempty [no_min_order α] (hs : is_lub s a) : s.nonempty :=
624
623
let ⟨a', ha'⟩ := exists_lt a in
625
- ne_empty_iff_nonempty.1 $ assume h,
626
- have a ≤ a', from hs.right $ by simp only [h, upper_bounds_empty],
627
- not_le_of_lt ha' this
624
+ ne_empty_iff_nonempty.1 $ λ h, not_le_of_lt ha' $ hs.right $ by simp only [h, upper_bounds_empty]
628
625
629
626
lemma is_glb.nonempty [no_max_order α] (hs : is_glb s a) : s.nonempty := hs.dual.nonempty
630
627
@@ -682,11 +679,11 @@ by rw [insert_eq, lower_bounds_union, lower_bounds_singleton]
682
679
683
680
/-- When there is a global maximum, every set is bounded above. -/
684
681
@[simp] protected lemma order_top.bdd_above [preorder γ] [order_top γ] (s : set γ) : bdd_above s :=
685
- ⟨⊤, assume a ha, order_top.le_top a⟩
682
+ ⟨⊤, λ a ha, order_top.le_top a⟩
686
683
687
684
/-- When there is a global minimum, every set is bounded below. -/
688
685
@[simp] protected lemma order_bot.bdd_below [preorder γ] [order_bot γ] (s : set γ) : bdd_below s :=
689
- ⟨⊥, assume a ha, order_bot.bot_le a⟩
686
+ ⟨⊥, λ a ha, order_bot.bot_le a⟩
690
687
691
688
/-!
692
689
#### Pair
@@ -750,13 +747,13 @@ lemma is_least.unique (Ha : is_least s a) (Hb : is_least s b) : a = b :=
750
747
le_antisymm (Ha.right Hb.left) (Hb.right Ha.left)
751
748
752
749
lemma is_least.is_least_iff_eq (Ha : is_least s a) : is_least s b ↔ a = b :=
753
- iff.intro Ha.unique (assume h, h ▸ Ha)
750
+ iff.intro Ha.unique (λ h, h ▸ Ha)
754
751
755
752
lemma is_greatest.unique (Ha : is_greatest s a) (Hb : is_greatest s b) : a = b :=
756
753
le_antisymm (Hb.right Ha.left) (Ha.right Hb.left)
757
754
758
755
lemma is_greatest.is_greatest_iff_eq (Ha : is_greatest s a) : is_greatest s b ↔ a = b :=
759
- iff.intro Ha.unique (assume h, h ▸ Ha)
756
+ iff.intro Ha.unique (λ h, h ▸ Ha)
760
757
761
758
lemma is_lub.unique (Ha : is_lub s a) (Hb : is_lub s b) : a = b :=
762
759
Ha.unique Hb
@@ -839,17 +836,23 @@ namespace monotone_on
839
836
840
837
variables [preorder α] [preorder β] {f : α → β} {s t : set α}
841
838
(Hf : monotone_on f t) {a : α} (Hst : s ⊆ t)
842
- include Hf Hst
839
+ include Hf
843
840
844
841
lemma mem_upper_bounds_image (Has : a ∈ upper_bounds s) (Hat : a ∈ t) :
845
842
f a ∈ upper_bounds (f '' s) :=
846
- ball_image_of_ball (assume x H, Hf (Hst H) Hat (Has H))
843
+ ball_image_of_ball (λ x H, Hf (Hst H) Hat (Has H))
844
+
845
+ lemma mem_upper_bounds_image_self : a ∈ upper_bounds t → a ∈ t → f a ∈ upper_bounds (f '' t) :=
846
+ Hf.mem_upper_bounds_image subset_rfl
847
847
848
848
lemma mem_lower_bounds_image (Has : a ∈ lower_bounds s) (Hat : a ∈ t) :
849
849
f a ∈ lower_bounds (f '' s) :=
850
- ball_image_of_ball (assume x H, Hf Hat (Hst H) (Has H))
850
+ ball_image_of_ball (λ x H, Hf Hat (Hst H) (Has H))
851
+
852
+ lemma mem_lower_bounds_image_self : a ∈ lower_bounds t → a ∈ t → f a ∈ lower_bounds (f '' t) :=
853
+ Hf.mem_lower_bounds_image subset_rfl
851
854
852
- lemma image_upper_bounds_subset_upper_bounds_image :
855
+ lemma image_upper_bounds_subset_upper_bounds_image (Hst : s ⊆ t) :
853
856
f '' (upper_bounds s ∩ t) ⊆ upper_bounds (f '' s) :=
854
857
by { rintro _ ⟨a, ha, rfl⟩, exact Hf.mem_upper_bounds_image Hst ha.1 ha.2 }
855
858
@@ -868,36 +871,32 @@ lemma map_bdd_below : (lower_bounds s ∩ t).nonempty → bdd_below (f '' s) :=
868
871
λ ⟨C, hs, ht⟩, ⟨f C, Hf.mem_lower_bounds_image Hst hs ht⟩
869
872
870
873
/-- A monotone map sends a least element of a set to a least element of its image. -/
871
- lemma map_is_least (Ha : is_least s a) : is_least (f '' s ) (f a) :=
872
- ⟨mem_image_of_mem _ Ha.1 , Hf.mem_lower_bounds_image Hst Ha.2 (Hst Ha.1 ) ⟩
874
+ lemma map_is_least (Ha : is_least t a) : is_least (f '' t ) (f a) :=
875
+ ⟨mem_image_of_mem _ Ha.1 , Hf.mem_lower_bounds_image_self Ha.2 Ha.1 ⟩
873
876
874
877
/-- A monotone map sends a greatest element of a set to a greatest element of its image. -/
875
- lemma map_is_greatest (Ha : is_greatest s a) : is_greatest (f '' s) (f a) :=
876
- ⟨mem_image_of_mem _ Ha.1 , Hf.mem_upper_bounds_image Hst Ha.2 (Hst Ha.1 )⟩
877
-
878
- lemma is_lub_image_le (Ha : is_lub s a) (Hat : a ∈ t) {b : β} (Hb : is_lub (f '' s) b) :
879
- b ≤ f a :=
880
- Hb.2 (Hf.mem_upper_bounds_image Hst Ha.1 Hat)
881
-
882
- lemma le_is_glb_image (Ha : is_glb s a) (Hat : a ∈ t) {b : β} (Hb : is_glb (f '' s) b) :
883
- f a ≤ b :=
884
- Hb.2 (Hf.mem_lower_bounds_image Hst Ha.1 Hat)
878
+ lemma map_is_greatest (Ha : is_greatest t a) : is_greatest (f '' t) (f a) :=
879
+ ⟨mem_image_of_mem _ Ha.1 , Hf.mem_upper_bounds_image_self Ha.2 Ha.1 ⟩
885
880
886
881
end monotone_on
887
882
888
883
namespace antitone_on
889
884
890
885
variables [preorder α] [preorder β] {f : α → β} {s t : set α}
891
886
(Hf : antitone_on f t) {a : α} (Hst : s ⊆ t)
892
- include Hf Hst
887
+ include Hf
893
888
894
- lemma mem_upper_bounds_image (Has : a ∈ lower_bounds s) (Hat : a ∈ t) :
895
- f a ∈ upper_bounds (f '' s) :=
896
- Hf.dual_right.mem_lower_bounds_image Hst Has Hat
889
+ lemma mem_upper_bounds_image (Has : a ∈ lower_bounds s) : a ∈ t → f a ∈ upper_bounds (f '' s) :=
890
+ Hf.dual_right.mem_lower_bounds_image Hst Has
897
891
898
- lemma mem_lower_bounds_image (Has : a ∈ upper_bounds s) (Hat : a ∈ t) :
899
- f a ∈ lower_bounds (f '' s) :=
900
- Hf.dual_right.mem_upper_bounds_image Hst Has Hat
892
+ lemma mem_upper_bounds_image_self : a ∈ lower_bounds t → a ∈ t → f a ∈ upper_bounds (f '' t) :=
893
+ Hf.dual_right.mem_lower_bounds_image_self
894
+
895
+ lemma mem_lower_bounds_image : a ∈ upper_bounds s → a ∈ t → f a ∈ lower_bounds (f '' s) :=
896
+ Hf.dual_right.mem_upper_bounds_image Hst
897
+
898
+ lemma mem_lower_bounds_image_self : a ∈ upper_bounds t → a ∈ t → f a ∈ lower_bounds (f '' t) :=
899
+ Hf.dual_right.mem_upper_bounds_image_self
901
900
902
901
lemma image_lower_bounds_subset_upper_bounds_image :
903
902
f '' (lower_bounds s ∩ t) ⊆ upper_bounds (f '' s) :=
@@ -916,51 +915,39 @@ lemma map_bdd_below : (lower_bounds s ∩ t).nonempty → bdd_above (f '' s) :=
916
915
Hf.dual_right.map_bdd_below Hst
917
916
918
917
/-- An antitone map sends a greatest element of a set to a least element of its image. -/
919
- lemma map_is_greatest (Ha : is_greatest s a) : is_least (f '' s ) (f a) :=
920
- Hf.dual_right.map_is_greatest Hst Ha
918
+ lemma map_is_greatest : is_greatest t a → is_least (f '' t ) (f a) :=
919
+ Hf.dual_right.map_is_greatest
921
920
922
921
/-- An antitone map sends a least element of a set to a greatest element of its image. -/
923
- lemma map_is_least (Ha : is_least s a) : is_greatest (f '' s) (f a) :=
924
- Hf.dual_right.map_is_least Hst Ha
925
-
926
- lemma is_lub_image_le (Ha : is_glb s a) (Hat : a ∈ t) {b : β} (Hb : is_lub (f '' s) b) : b ≤ f a :=
927
- Hf.dual_left.is_lub_image_le Hst Ha Hat Hb
928
-
929
- lemma le_is_glb_image (Ha : is_lub s a) (Hat : a ∈ t) {b : β} (Hb : is_glb (f '' s) b) : f a ≤ b :=
930
- Hf.dual_left.le_is_glb_image Hst Ha Hat Hb
922
+ lemma map_is_least : is_least t a → is_greatest (f '' t) (f a) :=
923
+ Hf.dual_right.map_is_least
931
924
932
925
end antitone_on
933
926
934
927
namespace monotone
935
928
936
929
variables [preorder α] [preorder β] {f : α → β} (Hf : monotone f) {a : α} {s : set α}
930
+ include Hf
937
931
938
- lemma mem_upper_bounds_image (Ha : a ∈ upper_bounds s) :
939
- f a ∈ upper_bounds (f '' s) :=
940
- ball_image_of_ball (assume x H, Hf (Ha ‹x ∈ s›))
932
+ lemma mem_upper_bounds_image (Ha : a ∈ upper_bounds s) : f a ∈ upper_bounds (f '' s) :=
933
+ ball_image_of_ball (λ x H, Hf (Ha H))
941
934
942
- lemma mem_lower_bounds_image (Ha : a ∈ lower_bounds s) :
943
- f a ∈ lower_bounds (f '' s) :=
944
- ball_image_of_ball (assume x H, Hf (Ha ‹x ∈ s›))
935
+ lemma mem_lower_bounds_image (Ha : a ∈ lower_bounds s) : f a ∈ lower_bounds (f '' s) :=
936
+ ball_image_of_ball (λ x H, Hf (Ha H))
945
937
946
- lemma image_upper_bounds_subset_upper_bounds_image (hf : monotone f) :
947
- f '' upper_bounds s ⊆ upper_bounds (f '' s) :=
948
- begin
949
- rintro _ ⟨a, ha, rfl⟩,
950
- exact hf.mem_upper_bounds_image ha,
951
- end
938
+ lemma image_upper_bounds_subset_upper_bounds_image : f '' upper_bounds s ⊆ upper_bounds (f '' s) :=
939
+ by { rintro _ ⟨a, ha, rfl⟩, exact Hf.mem_upper_bounds_image ha }
952
940
953
- lemma image_lower_bounds_subset_lower_bounds_image (hf : monotone f) :
954
- f '' lower_bounds s ⊆ lower_bounds (f '' s) :=
955
- hf.dual.image_upper_bounds_subset_upper_bounds_image
941
+ lemma image_lower_bounds_subset_lower_bounds_image : f '' lower_bounds s ⊆ lower_bounds (f '' s) :=
942
+ Hf.dual.image_upper_bounds_subset_upper_bounds_image
956
943
957
944
/-- The image under a monotone function of a set which is bounded above is bounded above. -/
958
- lemma map_bdd_above (hf : monotone f) : bdd_above s → bdd_above (f '' s)
959
- | ⟨C, hC⟩ := ⟨f C, hf .mem_upper_bounds_image hC⟩
945
+ lemma map_bdd_above : bdd_above s → bdd_above (f '' s)
946
+ | ⟨C, hC⟩ := ⟨f C, Hf .mem_upper_bounds_image hC⟩
960
947
961
948
/-- The image under a monotone function of a set which is bounded below is bounded below. -/
962
- lemma map_bdd_below (hf : monotone f) : bdd_below s → bdd_below (f '' s)
963
- | ⟨C, hC⟩ := ⟨f C, hf .mem_lower_bounds_image hC⟩
949
+ lemma map_bdd_below : bdd_below s → bdd_below (f '' s)
950
+ | ⟨C, hC⟩ := ⟨f C, Hf .mem_lower_bounds_image hC⟩
964
951
965
952
/-- A monotone map sends a least element of a set to a least element of its image. -/
966
953
lemma map_is_least (Ha : is_least s a) : is_least (f '' s) (f a) :=
@@ -970,56 +957,38 @@ lemma map_is_least (Ha : is_least s a) : is_least (f '' s) (f a) :=
970
957
lemma map_is_greatest (Ha : is_greatest s a) : is_greatest (f '' s) (f a) :=
971
958
⟨mem_image_of_mem _ Ha.1 , Hf.mem_upper_bounds_image Ha.2 ⟩
972
959
973
- lemma is_lub_image_le (Ha : is_lub s a) {b : β} (Hb : is_lub (f '' s) b) :
974
- b ≤ f a :=
975
- Hb.2 (Hf.mem_upper_bounds_image Ha.1 )
976
-
977
- lemma le_is_glb_image (Ha : is_glb s a) {b : β} (Hb : is_glb (f '' s) b) :
978
- f a ≤ b :=
979
- Hb.2 (Hf.mem_lower_bounds_image Ha.1 )
980
-
981
960
end monotone
982
961
983
962
namespace antitone
984
963
variables [preorder α] [preorder β] {f : α → β} (hf : antitone f) {a : α} {s : set α}
985
964
986
- lemma mem_upper_bounds_image (ha : a ∈ lower_bounds s) :
987
- f a ∈ upper_bounds (f '' s) :=
988
- hf.dual_right.mem_lower_bounds_image ha
965
+ lemma mem_upper_bounds_image : a ∈ lower_bounds s → f a ∈ upper_bounds (f '' s) :=
966
+ hf.dual_right.mem_lower_bounds_image
989
967
990
- lemma mem_lower_bounds_image (ha : a ∈ upper_bounds s) :
991
- f a ∈ lower_bounds (f '' s) :=
992
- hf.dual_right.mem_upper_bounds_image ha
968
+ lemma mem_lower_bounds_image : a ∈ upper_bounds s → f a ∈ lower_bounds (f '' s) :=
969
+ hf.dual_right.mem_upper_bounds_image
993
970
994
- lemma image_lower_bounds_subset_upper_bounds_image (hf : antitone f) :
995
- f '' lower_bounds s ⊆ upper_bounds (f '' s) :=
971
+ lemma image_lower_bounds_subset_upper_bounds_image : f '' lower_bounds s ⊆ upper_bounds (f '' s) :=
996
972
hf.dual_right.image_lower_bounds_subset_lower_bounds_image
997
973
998
- lemma image_upper_bounds_subset_lower_bounds_image (hf : antitone f) :
999
- f '' upper_bounds s ⊆ lower_bounds (f '' s) :=
974
+ lemma image_upper_bounds_subset_lower_bounds_image : f '' upper_bounds s ⊆ lower_bounds (f '' s) :=
1000
975
hf.dual_right.image_upper_bounds_subset_upper_bounds_image
1001
976
1002
977
/-- The image under an antitone function of a set which is bounded above is bounded below. -/
1003
- lemma map_bdd_above (hf : antitone f) : bdd_above s → bdd_below (f '' s) :=
978
+ lemma map_bdd_above : bdd_above s → bdd_below (f '' s) :=
1004
979
hf.dual_right.map_bdd_above
1005
980
1006
981
/-- The image under an antitone function of a set which is bounded below is bounded above. -/
1007
- lemma map_bdd_below (hf : antitone f) : bdd_below s → bdd_above (f '' s) :=
982
+ lemma map_bdd_below : bdd_below s → bdd_above (f '' s) :=
1008
983
hf.dual_right.map_bdd_below
1009
984
1010
985
/-- An antitone map sends a greatest element of a set to a least element of its image. -/
1011
- lemma map_is_greatest (ha : is_greatest s a) : is_least (f '' s) (f a) :=
1012
- hf.dual_right.map_is_greatest ha
986
+ lemma map_is_greatest : is_greatest s a → is_least (f '' s) (f a) :=
987
+ hf.dual_right.map_is_greatest
1013
988
1014
989
/-- An antitone map sends a least element of a set to a greatest element of its image. -/
1015
- lemma map_is_least (ha : is_least s a) : is_greatest (f '' s) (f a) :=
1016
- hf.dual_right.map_is_least ha
1017
-
1018
- lemma is_lub_image_le (ha : is_glb s a) {b : β} (hb : is_lub (f '' s) b) : b ≤ f a :=
1019
- hf.dual_left.is_lub_image_le ha hb
1020
-
1021
- lemma le_is_glb_image (ha : is_lub s a) {b : β} (hb : is_glb (f '' s) b) : f a ≤ b :=
1022
- hf.dual_left.le_is_glb_image ha hb
990
+ lemma map_is_least : is_least s a → is_greatest (f '' s) (f a) :=
991
+ hf.dual_right.map_is_least
1023
992
1024
993
end antitone
1025
994
0 commit comments