Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 5b9914b

Browse files
committed
style(group_theory/quotient_group): code style
1 parent d279ddb commit 5b9914b

File tree

1 file changed

+22
-22
lines changed

1 file changed

+22
-22
lines changed

group_theory/quotient_group.lean

Lines changed: 22 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -5,64 +5,64 @@ Authors: Kevin Buzzard, Patrick Massot.
55
66
This file is to a certain extent based on `quotient_module.lean` by Johannes Hölzl.
77
-/
8-
9-
108
import group_theory.coset
119

12-
universes u v
10+
universes u v
1311

1412
variables {G : Type u} [group G] (N : set G) [normal_subgroup N] {H : Type v} [group H]
1513

1614
local attribute [instance] left_rel normal_subgroup.to_is_subgroup
1715

18-
definition quotient_group := left_cosets N
16+
definition quotient_group := left_cosets N
1917

2018
local notation ` Q ` := quotient_group N
2119

22-
instance : group Q := left_cosets.group N
20+
instance : group Q := left_cosets.group N
2321

2422
namespace group.quotient
2523

2624
instance inhabited : inhabited Q := ⟨1
2725

2826
def mk : G → Q := λ g, ⟦g⟧
2927

30-
instance is_group_hom_quotient_mk : is_group_hom (mk N) := by refine {..}; intros; refl
28+
instance is_group_hom_quotient_mk : is_group_hom (mk N) := by refine {..}; intros; refl
3129

32-
def lift (φ : G → H) [Hφ : is_group_hom φ] (HN : ∀x∈N, φ x = 1) (q : Q) : H :=
30+
def lift (φ : G → H) [is_group_hom φ] (HN : ∀x∈N, φ x = 1) (q : Q) : H :=
3331
q.lift_on φ $ assume a b (hab : a⁻¹ * b ∈ N),
3432
(calc φ a = φ a * 1 : by simp
3533
... = φ a * φ (a⁻¹ * b) : by rw HN (a⁻¹ * b) hab
3634
... = φ (a * (a⁻¹ * b)) : by rw is_group_hom.mul φ a (a⁻¹ * b)
3735
... = φ b : by simp)
3836

39-
@[simp] lemma lift_mk {φ : G → H} [Hφ : is_group_hom φ] (HN : ∀x∈N, φ x = 1) (g : G) :
37+
@[simp] lemma lift_mk {φ : G → H} [is_group_hom φ] (HN : ∀x∈N, φ x = 1) (g : G) :
4038
lift N φ HN ⟦g⟧ = φ g := rfl
4139

42-
@[simp] lemma lift_mk' {φ : G → H} [Hφ : is_group_hom φ] (HN : ∀x∈N, φ x = 1) (g : G) :
40+
@[simp] lemma lift_mk' {φ : G → H} [is_group_hom φ] (HN : ∀x∈N, φ x = 1) (g : G) :
4341
lift N φ HN (mk N g) = φ g := rfl
4442

45-
variables (φ : G → H) [Hφ : is_group_hom φ] (HN : ∀x∈N, φ x = 1)
46-
include
43+
variables (φ : G → H) [is_group_hom φ] (HN : ∀x∈N, φ x = 1)
44+
4745
instance is_group_hom_quotient_lift :
48-
is_group_hom (lift N φ HN) :=
49-
⟨λ q r, quotient.induction_on₂ q r $ λ a b, show φ (a * b) = φ a * φ b, from is_group_hom.mul φ a b⟩
46+
is_group_hom (lift N φ HN) :=
47+
⟨λ q r, quotient.induction_on₂ q r $ λ a b,
48+
show φ (a * b) = φ a * φ b, from is_group_hom.mul φ a b⟩
5049

5150
open function is_group_hom
5251

5352
lemma injective_ker_lift : injective (lift (ker φ) φ $ λ x h, (mem_ker φ).1 h) :=
54-
assume a b, quotient.induction_on₂ a b $ assume a b (h : φ a = φ b), quotient.sound $
55-
show a⁻¹ * b ∈ ker φ, by rw [mem_ker φ, Hφ.mul,←h,is_group_hom.inv φ,inv_mul_self]
53+
assume a b, quotient.induction_on₂ a b $ assume a b (h : φ a = φ b), quotient.sound $
54+
show a⁻¹ * b ∈ ker φ, by rw [mem_ker φ,
55+
is_group_hom.mul φ, ← h, is_group_hom.inv φ, inv_mul_self]
5656

5757
end group.quotient
5858

5959
namespace group
60-
variables {cG : Type u} [comm_group cG] (cN : set cG) [normal_subgroup cN]
60+
variables {cG : Type u} [comm_group cG] (cN : set cG) [normal_subgroup cN]
6161

62-
instance : comm_group (quotient_group cN) :=
63-
{ mul_comm := λ a b,quotient.induction_on₂ a b $ λ g h,
64-
show ⟦g * h⟧ = ⟦h * g⟧,
62+
instance : comm_group (quotient_group cN) :=
63+
{ mul_comm := λ a b, quotient.induction_on₂ a b $ λ g h,
64+
show ⟦g * h⟧ = ⟦h * g⟧,
6565
by rw [mul_comm g h],
66-
..left_cosets.group cN
67-
}
68-
end group
66+
..left_cosets.group cN }
67+
68+
end group

0 commit comments

Comments
 (0)