@@ -424,13 +424,12 @@ theorem empty_ne_univ [nonempty α] : (∅ : set α) ≠ univ :=
424
424
425
425
@[simp] theorem subset_univ (s : set α) : s ⊆ univ := λ x H, trivial
426
426
427
- theorem univ_subset_iff {s : set α} : univ ⊆ s ↔ s = univ :=
428
- (subset.antisymm_iff.trans $ and_iff_right (subset_univ _)).symm
427
+ theorem univ_subset_iff {s : set α} : univ ⊆ s ↔ s = univ := @top_le_iff _ _ _ s
429
428
430
- theorem eq_univ_of_univ_subset {s : set α} : univ ⊆ s → s = univ := univ_subset_iff. 1
429
+ alias univ_subset_iff ↔ eq_univ_of_univ_subset _
431
430
432
431
theorem eq_univ_iff_forall {s : set α} : s = univ ↔ ∀ x, x ∈ s :=
433
- univ_subset_iff.symm.trans $ forall_congr $ λ x, imp_iff_right ⟨⟩
432
+ univ_subset_iff.symm.trans $ forall_congr $ λ x, imp_iff_right trivial
434
433
435
434
theorem eq_univ_of_forall {s : set α} : (∀ x, x ∈ s) → s = univ := eq_univ_iff_forall.2
436
435
@@ -450,6 +449,8 @@ by simp [subset_def]
450
449
lemma univ_unique [unique α] : @set.univ α = {default} :=
451
450
set.ext $ λ x, iff_of_true trivial $ subsingleton.elim x default
452
451
452
+ lemma ssubset_univ_iff : s ⊂ univ ↔ s ≠ univ := lt_top_iff_ne_top
453
+
453
454
instance nontrivial_of_nonempty [nonempty α] : nontrivial (set α) := ⟨⟨∅, univ, empty_ne_univ⟩⟩
454
455
455
456
/-! ### Lemmas about union -/
@@ -932,18 +933,13 @@ theorem compl_inter (s t : set α) : (s ∩ t)ᶜ = sᶜ ∪ tᶜ := compl_inf
932
933
lemma compl_ne_univ : sᶜ ≠ univ ↔ s.nonempty :=
933
934
compl_univ_iff.not.trans ne_empty_iff_nonempty
934
935
935
- lemma nonempty_compl {s : set α} : sᶜ.nonempty ↔ s ≠ univ :=
936
- ne_empty_iff_nonempty.symm.trans compl_empty_iff.not
936
+ lemma nonempty_compl {s : set α} : sᶜ.nonempty ↔ s ≠ univ := (ne_univ_iff_exists_not_mem s).symm
937
937
938
- lemma mem_compl_singleton_iff {a x : α} : x ∈ ({a} : set α)ᶜ ↔ x ≠ a :=
939
- mem_singleton_iff.not
938
+ lemma mem_compl_singleton_iff {a x : α} : x ∈ ({a} : set α)ᶜ ↔ x ≠ a := iff.rfl
940
939
941
- lemma compl_singleton_eq (a : α) : ({a} : set α)ᶜ = {x | x ≠ a} :=
942
- ext $ λ x, mem_compl_singleton_iff
940
+ lemma compl_singleton_eq (a : α) : ({a} : set α)ᶜ = {x | x ≠ a} := rfl
943
941
944
- @[simp]
945
- lemma compl_ne_eq_singleton (a : α) : ({x | x ≠ a} : set α)ᶜ = {a} :=
946
- by { ext, simp, }
942
+ @[simp] lemma compl_ne_eq_singleton (a : α) : ({x | x ≠ a} : set α)ᶜ = {a} := compl_compl _
947
943
948
944
theorem union_eq_compl_compl_inter_compl (s t : set α) : s ∪ t = (sᶜ ∩ tᶜ)ᶜ :=
949
945
ext $ λ x, or_iff_not_and_not
0 commit comments