Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 5bff97f

Browse files
committed
chore(data/set/basic): reflow/golf some proofs (#17066)
* reuse facts about `order_top`; * use `alias`; * add `set.ssubset_univ_iff`; * replace some proofs with `iff.rfl`/`rfl`.
1 parent 76c3f72 commit 5bff97f

File tree

1 file changed

+9
-13
lines changed

1 file changed

+9
-13
lines changed

src/data/set/basic.lean

Lines changed: 9 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -424,13 +424,12 @@ theorem empty_ne_univ [nonempty α] : (∅ : set α) ≠ univ :=
424424

425425
@[simp] theorem subset_univ (s : set α) : s ⊆ univ := λ x H, trivial
426426

427-
theorem univ_subset_iff {s : set α} : univ ⊆ s ↔ s = univ :=
428-
(subset.antisymm_iff.trans $ and_iff_right (subset_univ _)).symm
427+
theorem univ_subset_iff {s : set α} : univ ⊆ s ↔ s = univ := @top_le_iff _ _ _ s
429428

430-
theorem eq_univ_of_univ_subset {s : set α} : univ ⊆ s → s = univ := univ_subset_iff.1
429+
alias univ_subset_iff ↔ eq_univ_of_univ_subset _
431430

432431
theorem eq_univ_iff_forall {s : set α} : s = univ ↔ ∀ x, x ∈ s :=
433-
univ_subset_iff.symm.trans $ forall_congr $ λ x, imp_iff_right ⟨⟩
432+
univ_subset_iff.symm.trans $ forall_congr $ λ x, imp_iff_right trivial
434433

435434
theorem eq_univ_of_forall {s : set α} : (∀ x, x ∈ s) → s = univ := eq_univ_iff_forall.2
436435

@@ -450,6 +449,8 @@ by simp [subset_def]
450449
lemma univ_unique [unique α] : @set.univ α = {default} :=
451450
set.ext $ λ x, iff_of_true trivial $ subsingleton.elim x default
452451

452+
lemma ssubset_univ_iff : s ⊂ univ ↔ s ≠ univ := lt_top_iff_ne_top
453+
453454
instance nontrivial_of_nonempty [nonempty α] : nontrivial (set α) := ⟨⟨∅, univ, empty_ne_univ⟩⟩
454455

455456
/-! ### Lemmas about union -/
@@ -932,18 +933,13 @@ theorem compl_inter (s t : set α) : (s ∩ t)ᶜ = sᶜ ∪ tᶜ := compl_inf
932933
lemma compl_ne_univ : sᶜ ≠ univ ↔ s.nonempty :=
933934
compl_univ_iff.not.trans ne_empty_iff_nonempty
934935

935-
lemma nonempty_compl {s : set α} : sᶜ.nonempty ↔ s ≠ univ :=
936-
ne_empty_iff_nonempty.symm.trans compl_empty_iff.not
936+
lemma nonempty_compl {s : set α} : sᶜ.nonempty ↔ s ≠ univ := (ne_univ_iff_exists_not_mem s).symm
937937

938-
lemma mem_compl_singleton_iff {a x : α} : x ∈ ({a} : set α)ᶜ ↔ x ≠ a :=
939-
mem_singleton_iff.not
938+
lemma mem_compl_singleton_iff {a x : α} : x ∈ ({a} : set α)ᶜ ↔ x ≠ a := iff.rfl
940939

941-
lemma compl_singleton_eq (a : α) : ({a} : set α)ᶜ = {x | x ≠ a} :=
942-
ext $ λ x, mem_compl_singleton_iff
940+
lemma compl_singleton_eq (a : α) : ({a} : set α)ᶜ = {x | x ≠ a} := rfl
943941

944-
@[simp]
945-
lemma compl_ne_eq_singleton (a : α) : ({x | x ≠ a} : set α)ᶜ = {a} :=
946-
by { ext, simp, }
942+
@[simp] lemma compl_ne_eq_singleton (a : α) : ({x | x ≠ a} : set α)ᶜ = {a} := compl_compl _
947943

948944
theorem union_eq_compl_compl_inter_compl (s t : set α) : s ∪ t = (sᶜ ∩ tᶜ)ᶜ :=
949945
ext $ λ x, or_iff_not_and_not

0 commit comments

Comments
 (0)