@@ -661,19 +661,19 @@ lemma bliminf_antitone (h : ∀ x, p x → q x) :
661
661
bliminf u f q ≤ bliminf u f p :=
662
662
Sup_le_Sup $ λ a ha, ha.mono $ by tauto
663
663
664
- lemma mono_blimsup' (h : ∀ᶠ x in f, u x ≤ v x) :
664
+ lemma mono_blimsup' (h : ∀ᶠ x in f, p x → u x ≤ v x) :
665
665
blimsup u f p ≤ blimsup v f p :=
666
- Inf_le_Inf $ λ a ha, (ha.and h).mono $ λ x hx hx', hx.2 .trans (hx.1 hx')
666
+ Inf_le_Inf $ λ a ha, (ha.and h).mono $ λ x hx hx', ( hx.2 hx') .trans (hx.1 hx')
667
667
668
- lemma mono_blimsup (h : ∀ x, u x ≤ v x) :
668
+ lemma mono_blimsup (h : ∀ x, p x → u x ≤ v x) :
669
669
blimsup u f p ≤ blimsup v f p :=
670
670
mono_blimsup' $ eventually_of_forall h
671
671
672
- lemma mono_bliminf' (h : ∀ᶠ x in f, u x ≤ v x) :
672
+ lemma mono_bliminf' (h : ∀ᶠ x in f, p x → u x ≤ v x) :
673
673
bliminf u f p ≤ bliminf v f p :=
674
- Sup_le_Sup $ λ a ha, (ha.and h).mono $ λ x hx hx', (hx.1 hx').trans hx.2
674
+ Sup_le_Sup $ λ a ha, (ha.and h).mono $ λ x hx hx', (hx.1 hx').trans ( hx.2 hx')
675
675
676
- lemma mono_bliminf (h : ∀ x, u x ≤ v x) :
676
+ lemma mono_bliminf (h : ∀ x, p x → u x ≤ v x) :
677
677
bliminf u f p ≤ bliminf v f p :=
678
678
mono_bliminf' $ eventually_of_forall h
679
679
@@ -703,6 +703,32 @@ sup_le (blimsup_mono $ by tauto) (blimsup_mono $ by tauto)
703
703
bliminf u f (λ x, p x ∨ q x) ≤ bliminf u f p ⊓ bliminf u f q :=
704
704
@blimsup_sup_le_or αᵒᵈ β _ f p q u
705
705
706
+ lemma order_iso.apply_blimsup [complete_lattice γ] (e : α ≃o γ) :
707
+ e (blimsup u f p) = blimsup (e ∘ u) f p :=
708
+ begin
709
+ simp only [blimsup_eq, map_Inf, function.comp_app],
710
+ congr,
711
+ ext c,
712
+ obtain ⟨a, rfl⟩ := e.surjective c,
713
+ simp,
714
+ end
715
+
716
+ lemma order_iso.apply_bliminf [complete_lattice γ] (e : α ≃o γ) :
717
+ e (bliminf u f p) = bliminf (e ∘ u) f p :=
718
+ @order_iso.apply_blimsup αᵒᵈ β γᵒᵈ _ f p u _ e.dual
719
+
720
+ lemma Sup_hom.apply_blimsup_le [complete_lattice γ] (g : Sup_hom α γ) :
721
+ g (blimsup u f p) ≤ blimsup (g ∘ u) f p :=
722
+ begin
723
+ simp only [blimsup_eq_infi_bsupr],
724
+ refine ((order_hom_class.mono g).map_infi₂_le _).trans _,
725
+ simp only [_root_.map_supr],
726
+ end
727
+
728
+ lemma Inf_hom.le_apply_bliminf [complete_lattice γ] (g : Inf_hom α γ) :
729
+ bliminf (g ∘ u) f p ≤ g (bliminf u f p) :=
730
+ @Sup_hom.apply_blimsup_le αᵒᵈ β γᵒᵈ _ f p u _ g.dual
731
+
706
732
end complete_lattice
707
733
708
734
section complete_distrib_lattice
0 commit comments