@@ -304,6 +304,24 @@ begin
304
304
simpa [div_eq_mul_inv] using tendsto_pow_const_div_const_pow_of_one_lt k hr'
305
305
end
306
306
307
+ /-- If `0 ≤ r < 1`, then `n ^ k r ^ n` tends to zero for any natural `k`.
308
+ This is a specialized version of `tendsto_pow_const_mul_const_pow_of_abs_lt_one`, singled out
309
+ for ease of application. -/
310
+ lemma tendsto_pow_const_mul_const_pow_of_lt_one (k : ℕ) {r : ℝ} (hr : 0 ≤ r) (h'r : r < 1 ) :
311
+ tendsto (λ n, n ^ k * r ^ n : ℕ → ℝ) at_top (𝓝 0 ) :=
312
+ tendsto_pow_const_mul_const_pow_of_abs_lt_one k (abs_lt.2 ⟨neg_one_lt_zero.trans_le hr, h'r⟩)
313
+
314
+ /-- If `|r| < 1`, then `n * r ^ n` tends to zero. -/
315
+ lemma tendsto_self_mul_const_pow_of_abs_lt_one {r : ℝ} (hr : |r| < 1 ) :
316
+ tendsto (λ n, n * r ^ n : ℕ → ℝ) at_top (𝓝 0 ) :=
317
+ by simpa only [pow_one] using tendsto_pow_const_mul_const_pow_of_abs_lt_one 1 hr
318
+
319
+ /-- If `0 ≤ r < 1`, then `n * r ^ n` tends to zero. This is a specialized version of
320
+ `tendsto_self_mul_const_pow_of_abs_lt_one`, singled out for ease of application. -/
321
+ lemma tendsto_self_mul_const_pow_of_lt_one {r : ℝ} (hr : 0 ≤ r) (h'r : r < 1 ) :
322
+ tendsto (λ n, n * r ^ n : ℕ → ℝ) at_top (𝓝 0 ) :=
323
+ by simpa only [pow_one] using tendsto_pow_const_mul_const_pow_of_lt_one 1 hr h'r
324
+
307
325
/-- If a sequence `v` of real numbers satisfies `k * v n ≤ v (n+1)` with `1 < k`,
308
326
then it goes to +∞. -/
309
327
lemma tendsto_at_top_of_geom_le {v : ℕ → ℝ} {c : ℝ} (h₀ : 0 < v 0 ) (hc : 1 < c)
@@ -361,6 +379,10 @@ by convert has_sum_geometric_of_lt_1 _ _; norm_num
361
379
lemma summable_geometric_two : summable (λn:ℕ, ((1 :ℝ)/2 ) ^ n) :=
362
380
⟨_, has_sum_geometric_two⟩
363
381
382
+ lemma summable_geometric_two_encode {ι : Type *} [encodable ι] :
383
+ summable (λ (i : ι), (1 /2 : ℝ)^(encodable.encode i)) :=
384
+ summable_geometric_two.comp_injective encodable.encode_injective
385
+
364
386
lemma tsum_geometric_two : ∑'n:ℕ, ((1 :ℝ)/2 ) ^ n = 2 :=
365
387
has_sum_geometric_two.tsum_eq
366
388
0 commit comments