@@ -31,30 +31,48 @@ normed, lattice, ordered, group
31
31
-/
32
32
33
33
/-!
34
- ### Normed lattice orderd groups
34
+ ### Normed lattice ordered groups
35
35
36
36
Motivated by the theory of Banach Lattices, this section introduces normed lattice ordered groups.
37
37
-/
38
38
39
39
local notation (name := abs) `|`a `|` := abs a
40
40
41
+ section solid_norm
42
+
43
+ /-- Let `α` be an `add_comm_group` with a `lattice` structure. A norm on `α` is *solid* if, for `a`
44
+ and `b` in `α`, with absolute values `|a|` and `|b|` respectively, `|a| ≤ |b|` implies `‖a‖ ≤ ‖b‖`.
45
+ -/
46
+ class has_solid_norm (α : Type *) [normed_add_comm_group α] [lattice α] : Prop :=
47
+ (solid : ∀ ⦃x y : α⦄, |x| ≤ |y| → ‖x‖ ≤ ‖y‖)
48
+
49
+ variables {α : Type *} [normed_add_comm_group α] [lattice α] [has_solid_norm α]
50
+
51
+ lemma norm_le_norm_of_abs_le_abs {a b : α} (h : |a| ≤ |b|) : ‖a‖ ≤ ‖b‖ := has_solid_norm.solid h
52
+
53
+ /-- If `α` has a solid norm, then the balls centered at the origin of `α` are solid sets. -/
54
+ lemma lattice_ordered_add_comm_group.is_solid_ball (r : ℝ) :
55
+ lattice_ordered_add_comm_group.is_solid (metric.ball (0 : α) r) :=
56
+ λ _ hx _ hxy, mem_ball_zero_iff.mpr ((has_solid_norm.solid hxy).trans_lt (mem_ball_zero_iff.mp hx))
57
+
58
+ instance : has_solid_norm ℝ := ⟨λ _ _, id⟩
59
+
60
+ instance : has_solid_norm ℚ := ⟨λ _ _ _, by simpa only [norm, ← rat.cast_abs, rat.cast_le]⟩
61
+
62
+ end solid_norm
63
+
41
64
/--
42
65
Let `α` be a normed commutative group equipped with a partial order covariant with addition, with
43
66
respect which `α` forms a lattice. Suppose that `α` is *solid* , that is to say, for `a` and `b` in
44
67
`α`, with absolute values `|a|` and `|b|` respectively, `|a| ≤ |b|` implies `‖a‖ ≤ ‖b‖`. Then `α` is
45
68
said to be a normed lattice ordered group.
46
69
-/
47
70
class normed_lattice_add_comm_group (α : Type *)
48
- extends normed_add_comm_group α, lattice α :=
71
+ extends normed_add_comm_group α, lattice α, has_solid_norm α :=
49
72
(add_le_add_left : ∀ a b : α, a ≤ b → ∀ c : α, c + a ≤ c + b)
50
- (solid : ∀ a b : α, |a| ≤ |b| → ‖a‖ ≤ ‖b‖)
51
-
52
- lemma solid {α : Type *} [normed_lattice_add_comm_group α] {a b : α} (h : |a| ≤ |b|) : ‖a‖ ≤ ‖b‖ :=
53
- normed_lattice_add_comm_group.solid a b h
54
73
55
74
instance : normed_lattice_add_comm_group ℝ :=
56
- { add_le_add_left := λ _ _ h _, add_le_add le_rfl h,
57
- solid := λ _ _, id, }
75
+ { add_le_add_left := λ _ _ h _, add_le_add le_rfl h,}
58
76
59
77
/--
60
78
A normed lattice ordered group is an ordered additive commutative group
@@ -64,7 +82,7 @@ instance normed_lattice_add_comm_group_to_ordered_add_comm_group {α : Type*}
64
82
[h : normed_lattice_add_comm_group α] : ordered_add_comm_group α := { ..h }
65
83
66
84
variables {α : Type *} [normed_lattice_add_comm_group α]
67
- open lattice_ordered_comm_group
85
+ open lattice_ordered_comm_group has_solid_norm
68
86
69
87
lemma dual_solid (a b : α) (h: b⊓-b ≤ a⊓-a) : ‖a‖ ≤ ‖b‖ :=
70
88
begin
0 commit comments