@@ -463,14 +463,17 @@ begin
463
463
exact ⟨i, hi, λ h, hsub h rfl⟩
464
464
end
465
465
466
- @[simp] lemma nhds_le_nhds_iff [t1_space α] {a b : α} : 𝓝 a ≤ 𝓝 b ↔ a = b :=
466
+ @[simp] lemma pure_le_nhds_iff [t1_space α] {a b : α} : pure a ≤ 𝓝 b ↔ a = b :=
467
467
begin
468
- refine ⟨λ h, _, λ h, h ▸ le_rfl ⟩,
468
+ refine ⟨λ h, _, λ h, h ▸ pure_le_nhds a ⟩,
469
469
by_contra hab,
470
- have := h (compl_singleton_mem_nhds $ ne.symm hab),
471
- refine mem_of_mem_nhds this (mem_singleton a )
470
+ simpa only [mem_pure, mem_compl_iff, mem_singleton, not_true] using
471
+ h (compl_singleton_mem_nhds $ ne.symm hab )
472
472
end
473
473
474
+ @[simp] lemma nhds_le_nhds_iff [t1_space α] {a b : α} : 𝓝 a ≤ 𝓝 b ↔ a = b :=
475
+ ⟨λ h, pure_le_nhds_iff.mp $ (pure_le_nhds a).trans h, λ h, h ▸ le_rfl⟩
476
+
474
477
@[simp] lemma nhds_eq_nhds_iff [t1_space α] {a b : α} : 𝓝 a = 𝓝 b ↔ a = b :=
475
478
⟨λ h, nhds_le_nhds_iff.mp h.le, λ h, h ▸ rfl⟩
476
479
@@ -542,6 +545,10 @@ lemma continuous_at_of_tendsto_nhds [topological_space β] [t1_space β] {f : α
542
545
(h : tendsto f (𝓝 a) (𝓝 b)) : continuous_at f a :=
543
546
show tendsto f (𝓝 a) (𝓝 $ f a), by rwa eq_of_tendsto_nhds h
544
547
548
+ lemma tendsto_const_nhds_iff [t1_space α] {l : filter α} [ne_bot l] {c d : α} :
549
+ tendsto (λ x, c) l (𝓝 d) ↔ c = d :=
550
+ by simp_rw [tendsto, filter.map_const, pure_le_nhds_iff]
551
+
545
552
/-- If the punctured neighborhoods of a point form a nontrivial filter, then any neighborhood is
546
553
infinite. -/
547
554
lemma infinite_of_mem_nhds {α} [topological_space α] [t1_space α] (x : α) [hx : ne_bot (𝓝[≠] x)]
@@ -807,10 +814,6 @@ lemma tendsto_nhds_unique_of_frequently_eq [t2_space α] {f g : β → α} {l :
807
814
have ∃ᶠ z : α × α in 𝓝 (a, b), z.1 = z.2 := (ha.prod_mk_nhds hb).frequently hfg,
808
815
not_not.1 $ λ hne, this (is_closed_diagonal.is_open_compl.mem_nhds hne)
809
816
810
- lemma tendsto_const_nhds_iff [t2_space α] {l : filter α} [ne_bot l] {c d : α} :
811
- tendsto (λ x, c) l (𝓝 d) ↔ c = d :=
812
- ⟨λ h, tendsto_nhds_unique (tendsto_const_nhds) h, λ h, h ▸ tendsto_const_nhds⟩
813
-
814
817
/-- A T₂.₅ space, also known as a Urysohn space, is a topological space
815
818
where for every pair `x ≠ y`, there are two open sets, with the intersection of closures
816
819
empty, one containing `x` and the other `y` . -/
0 commit comments