@@ -18,33 +18,83 @@ open set lattice filter metric
18
18
universes u v w
19
19
variables {α : Type u} {β : Type v} {γ : Type w}
20
20
21
- /-- A locally uniform limit of continuous functions is continuous -/
22
- lemma continuous_of_locally_uniform_limit_of_continuous [topological_space α] [metric_space β]
23
- {F : ℕ → α → β} {f : α → β}
24
- (L : ∀x:α, ∃s ∈ 𝓝 x, ∀ε>(0 :ℝ), ∃n, ∀y∈s, dist (F n y) (f y) ≤ ε)
25
- (C : ∀ n, continuous (F n)) : continuous f :=
26
- continuous_iff'.2 $ λ x ε ε0 , begin
27
- rcases L x with ⟨r, rx, hr⟩,
28
- rcases hr (ε/2 /2 ) (half_pos $ half_pos ε0 ) with ⟨n, hn⟩,
29
- filter_upwards [rx, continuous_iff'.1 (C n) x (ε/2 ) (half_pos ε0 )],
21
+ section uniform_limit
22
+ /-!
23
+ ### Continuity of uniform limits
24
+
25
+ In this section, we discuss variations around the continuity of a uniform limit of continuous
26
+ functions when the target space is a metric space. Specifically, we provide statements giving the
27
+ continuity within a set at a point, the continuity at a point, the continuity on a set, and the
28
+ continuity, assuming either locally uniform convergence or globally uniform convergence when this
29
+ makes sense.
30
+ -/
31
+
32
+ variables {ι : Type *} [topological_space α] [metric_space β]
33
+ {F : ι → α → β} {f : α → β} {s : set α} {x : α}
34
+
35
+ /-- A locally uniform limit of continuous functions within a set at a point is continuous
36
+ within this set at this point -/
37
+ lemma continuous_within_at_of_locally_uniform_limit_of_continuous_within_at
38
+ (hx : x ∈ s) (L : ∃t ∈ nhds_within x s, ∀ε>(0 :ℝ), ∃n, ∀y∈t, dist (F n y) (f y) ≤ ε)
39
+ (C : ∀ n, continuous_within_at (F n) s x) : continuous_within_at f s x :=
40
+ begin
41
+ apply metric.continuous_within_at_iff'.2 (λ ε εpos, _),
42
+ rcases L with ⟨r, rx, hr⟩,
43
+ rcases hr (ε/2 /2 ) (half_pos $ half_pos εpos) with ⟨n, hn⟩,
44
+ filter_upwards [rx, metric.continuous_within_at_iff'.1 (C n) (ε/2 ) (half_pos εpos)],
30
45
simp only [mem_set_of_eq],
31
46
rintro y yr ys,
32
47
calc dist (f y) (f x)
33
48
≤ dist (F n y) (F n x) + (dist (F n y) (f y) + dist (F n x) (f x)) : dist_triangle4_left _ _ _ _
34
49
... < ε/2 + (ε/2 /2 + ε/2 /2 ) :
35
- add_lt_add_of_lt_of_le ys (add_le_add (hn _ yr) (hn _ (mem_of_nhds rx)))
50
+ add_lt_add_of_lt_of_le ys (add_le_add (hn _ yr) (hn _ (mem_of_mem_nhds_within hx rx)))
36
51
... = ε : by rw [add_halves, add_halves]
37
52
end
38
53
54
+ /-- A locally uniform limit of continuous functions at a point is continuous at this point -/
55
+ lemma continuous_at_of_locally_uniform_limit_of_continuous_at
56
+ (L : ∃t ∈ 𝓝 x, ∀ε>(0 :ℝ), ∃n, ∀y∈t, dist (F n y) (f y) ≤ ε) (C : ∀ n, continuous_at (F n) x) :
57
+ continuous_at f x :=
58
+ begin
59
+ simp only [← continuous_within_at_univ] at C ⊢,
60
+ apply continuous_within_at_of_locally_uniform_limit_of_continuous_within_at (mem_univ _) _ C,
61
+ simpa [nhds_within_univ] using L
62
+ end
63
+
64
+ /-- A locally uniform limit of continuous functions on a set is continuous on this set -/
65
+ lemma continuous_on_of_locally_uniform_limit_of_continuous_on
66
+ (L : ∀ (x ∈ s), ∃t ∈ nhds_within x s, ∀ε>(0 :ℝ), ∃n, ∀y∈t, dist (F n y) (f y) ≤ ε)
67
+ (C : ∀ n, continuous_on (F n) s) : continuous_on f s :=
68
+ λ x hx, continuous_within_at_of_locally_uniform_limit_of_continuous_within_at hx
69
+ (L x hx) (λ n, C n x hx)
70
+
71
+ /-- A uniform limit of continuous functions on a set is continuous on this set -/
72
+ lemma continuous_on_of_uniform_limit_of_continuous_on
73
+ (L : ∀ε>(0 :ℝ), ∃N, ∀y ∈ s, dist (F N y) (f y) ≤ ε) :
74
+ (∀ n, continuous_on (F n) s) → continuous_on f s :=
75
+ continuous_on_of_locally_uniform_limit_of_continuous_on (λ x hx, ⟨s, self_mem_nhds_within, L⟩)
76
+
77
+ /-- A locally uniform limit of continuous functions is continuous -/
78
+ lemma continuous_of_locally_uniform_limit_of_continuous
79
+ (L : ∀x:α, ∃s ∈ 𝓝 x, ∀ε>(0 :ℝ), ∃n, ∀y∈s, dist (F n y) (f y) ≤ ε)
80
+ (C : ∀ n, continuous (F n)) : continuous f :=
81
+ begin
82
+ simp only [continuous_iff_continuous_on_univ] at ⊢ C,
83
+ apply continuous_on_of_locally_uniform_limit_of_continuous_on _ C,
84
+ simpa [nhds_within_univ] using L
85
+ end
86
+
39
87
/-- A uniform limit of continuous functions is continuous -/
40
- lemma continuous_of_uniform_limit_of_continuous [topological_space α] {β : Type v} [metric_space β]
41
- {F : ℕ → α → β} {f : α → β} (L : ∀ε>(0 :ℝ), ∃N, ∀y, dist (F N y) (f y) ≤ ε) :
88
+ lemma continuous_of_uniform_limit_of_continuous (L : ∀ε>(0 :ℝ), ∃N, ∀y, dist (F N y) (f y) ≤ ε) :
42
89
(∀ n, continuous (F n)) → continuous f :=
43
90
continuous_of_locally_uniform_limit_of_continuous $ λx,
44
91
⟨univ, by simpa [filter.univ_mem_sets] using L⟩
45
92
93
+ end uniform_limit
94
+
46
95
/-- The type of bounded continuous functions from a topological space to a metric space -/
47
- def bounded_continuous_function (α : Type u) (β : Type v) [topological_space α] [metric_space β] : Type (max u v) :=
96
+ def bounded_continuous_function (α : Type u) (β : Type v) [topological_space α] [metric_space β] :
97
+ Type (max u v) :=
48
98
{f : α → β // continuous f ∧ ∃C, ∀x y:α, dist (f x) (f y) ≤ C}
49
99
50
100
local infixr ` →ᵇ `:25 := bounded_continuous_function
0 commit comments