@@ -152,7 +152,7 @@ variables {C} {D}
152
152
def map (F : C ⥤ D) : thin_skeleton C ⥤ thin_skeleton D :=
153
153
{ obj := quotient.map F.obj $ λ X₁ X₂ ⟨hX⟩, ⟨F.map_iso hX⟩,
154
154
map := λ X Y, quotient.rec_on_subsingleton₂ X Y $
155
- λ x y k, hom_of_le ((le_of_hom k) .elim (λ t, ⟨F.map t⟩)) }
155
+ λ x y k, hom_of_le (k.le .elim (λ t, ⟨F.map t⟩)) }
156
156
157
157
lemma comp_to_thin_skeleton (F : C ⥤ D) : F ⋙ to_thin_skeleton D = to_thin_skeleton C ⋙ map F :=
158
158
rfl
@@ -172,11 +172,11 @@ def map₂ (F : C ⥤ D ⥤ E) :
172
172
(λ X₁ X₂ ⟨hX⟩ Y₁ Y₂ ⟨hY⟩, ⟨(F.obj X₁).map_iso hY ≪≫ (F.map_iso hX).app Y₂⟩) x y,
173
173
map := λ y₁ y₂, quotient.rec_on_subsingleton x $
174
174
λ X, quotient.rec_on_subsingleton₂ y₁ y₂ $
175
- λ Y₁ Y₂ hY, hom_of_le ((le_of_hom hY) .elim (λ g, ⟨(F.obj X).map g⟩)) },
175
+ λ Y₁ Y₂ hY, hom_of_le (hY.le .elim (λ g, ⟨(F.obj X).map g⟩)) },
176
176
map := λ x₁ x₂, quotient.rec_on_subsingleton₂ x₁ x₂ $
177
177
λ X₁ X₂ f,
178
178
{ app := λ y, quotient.rec_on_subsingleton y
179
- (λ Y, hom_of_le ((le_of_hom f) .elim (λ f', ⟨(F.map f').app Y⟩))) } }
179
+ (λ Y, hom_of_le (f.le .elim (λ f', ⟨(F.map f').app Y⟩))) } }
180
180
181
181
variables (C)
182
182
@@ -192,7 +192,7 @@ noncomputable def from_thin_skeleton : thin_skeleton C ⥤ C :=
192
192
map := λ x y, quotient.rec_on_subsingleton₂ x y $
193
193
λ X Y f,
194
194
(nonempty.some (quotient.mk_out X)).hom
195
- ≫ (le_of_hom f) .some
195
+ ≫ f.le .some
196
196
≫ (nonempty.some (quotient.mk_out Y)).inv }
197
197
198
198
noncomputable instance from_thin_skeleton_equivalence : is_equivalence (from_thin_skeleton C) :=
@@ -218,7 +218,7 @@ instance thin_skeleton_partial_order : partial_order (thin_skeleton C) :=
218
218
..category_theory.thin_skeleton.preorder C }
219
219
220
220
lemma skeletal : skeletal (thin_skeleton C) :=
221
- λ X Y, quotient.induction_on₂ X Y $ λ x y h, h.elim $ λ i, (le_of_hom i.1 ). antisymm (le_of_hom i.2 )
221
+ λ X Y, quotient.induction_on₂ X Y $ λ x y h, h.elim $ λ i, i.1 .le. antisymm i.2 .le
222
222
223
223
lemma map_comp_eq (F : E ⥤ D) (G : D ⥤ C) : map (F ⋙ G) = map F ⋙ map G :=
224
224
functor.eq_of_iso skeletal $
0 commit comments