|
1 | 1 | /-
|
2 | 2 | Copyright (c) 2019 Yury Kudryashov. All rights reserved.
|
3 | 3 | Released under Apache 2.0 license as described in the file LICENSE.
|
4 |
| -Authors: Yury Kudryashov, Sébastien Gouëzel |
| 4 | +Authors: Yury Kudryashov, Sébastien Gouëzel, Rémy Degenne |
5 | 5 | -/
|
6 | 6 | import analysis.convex.specific_functions
|
7 | 7 | import analysis.special_functions.pow
|
8 | 8 | import data.real.conjugate_exponents
|
9 | 9 | import tactic.nth_rewrite
|
| 10 | +import measure_theory.integration |
10 | 11 |
|
11 | 12 | /-!
|
12 | 13 | # Mean value inequalities
|
@@ -79,6 +80,12 @@ There are at least two short proofs of this inequality. In one proof we prenorma
|
79 | 80 | then apply Young's inequality to each $a_ib_i$. We use a different proof deducing this inequality
|
80 | 81 | from the generalized mean inequality for well-chosen vectors and weights.
|
81 | 82 |
|
| 83 | +Hölder's inequality for the Lebesgue integral of ennreal and nnreal functions: we prove |
| 84 | +`∫ (f * g) ∂μ ≤ (∫ f^p ∂μ) ^ (1/p) * (∫ g^q ∂μ) ^ (1/q)` for `p`, `q` conjugate real exponents |
| 85 | +and `α→(e)nnreal` functions in two cases, |
| 86 | +* `ennreal.lintegral_mul_le_Lp_mul_Lq` : ennreal functions, |
| 87 | +* `nnreal.lintegral_mul_le_Lp_mul_Lq` : nnreal functions. |
| 88 | +
|
82 | 89 | ### Minkowski's inequality
|
83 | 90 |
|
84 | 91 | The inequality says that for `p ≥ 1` the function
|
@@ -522,3 +529,174 @@ begin
|
522 | 529 | end
|
523 | 530 |
|
524 | 531 | end ennreal
|
| 532 | + |
| 533 | +section lintegral |
| 534 | +/-! |
| 535 | +### Hölder's inequality for the Lebesgue integral of ennreal and nnreal functions |
| 536 | +
|
| 537 | +We prove `∫ (f * g) ∂μ ≤ (∫ f^p ∂μ) ^ (1/p) * (∫ g^q ∂μ) ^ (1/q)` for `p`, `q` |
| 538 | +conjugate real exponents and `α→(e)nnreal` functions in several cases, the first two being useful |
| 539 | +only to prove the more general results: |
| 540 | +* `ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one` : ennreal functions for which the |
| 541 | + integrals on the right are equal to 1, |
| 542 | +* `ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top` : ennreal functions for which the |
| 543 | + integrals on the right are neither ⊤ nor 0, |
| 544 | +* `ennreal.lintegral_mul_le_Lp_mul_Lq` : ennreal functions, |
| 545 | +* `nnreal.lintegral_mul_le_Lp_mul_Lq` : nnreal functions. |
| 546 | +-/ |
| 547 | + |
| 548 | +open measure_theory |
| 549 | +variables {α : Type*} [measurable_space α] {μ : measure α} |
| 550 | + |
| 551 | +namespace ennreal |
| 552 | + |
| 553 | +lemma lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.is_conjugate_exponent q) |
| 554 | + {f g : α → ennreal} (hf : measurable f) (hg : measurable g) |
| 555 | + (hf_norm : ∫⁻ a, (f a)^p ∂μ = 1) (hg_norm : ∫⁻ a, (g a)^q ∂μ = 1) : |
| 556 | + ∫⁻ a, (f * g) a ∂μ ≤ 1 := |
| 557 | +begin |
| 558 | + calc ∫⁻ (a : α), ((f * g) a) ∂μ |
| 559 | + ≤ ∫⁻ (a : α), ((f a)^p / ennreal.of_real p + (g a)^q / ennreal.of_real q) ∂μ : |
| 560 | + lintegral_mono (λ a, young_inequality (f a) (g a) hpq) |
| 561 | + ... = 1 : |
| 562 | + begin |
| 563 | + simp_rw [div_def], |
| 564 | + rw lintegral_add, |
| 565 | + { rw [lintegral_mul_const _ hf.ennreal_rpow_const, lintegral_mul_const _ hg.ennreal_rpow_const, |
| 566 | + hf_norm, hg_norm, ←ennreal.div_def, ←ennreal.div_def, hpq.inv_add_inv_conj_ennreal], }, |
| 567 | + { exact hf.ennreal_rpow_const.ennreal_mul measurable_const, }, |
| 568 | + { exact hg.ennreal_rpow_const.ennreal_mul measurable_const, }, |
| 569 | + end |
| 570 | +end |
| 571 | + |
| 572 | +/-- Function multiplied by the inverse of its p-seminorm `(∫⁻ f^p ∂μ) ^ 1/p`-/ |
| 573 | +def fun_mul_inv_snorm (f : α → ennreal) (p : ℝ) (μ : measure α) : α → ennreal := |
| 574 | +λ a, (f a) * ((∫⁻ c, (f c) ^ p ∂μ) ^ (1 / p))⁻¹ |
| 575 | + |
| 576 | +lemma fun_eq_fun_mul_inv_snorm_mul_snorm {p : ℝ} (f : α → ennreal) |
| 577 | + (hf_nonzero : ∫⁻ a, (f a) ^ p ∂μ ≠ 0) (hf_top : ∫⁻ a, (f a) ^ p ∂μ ≠ ⊤) {a : α} : |
| 578 | + f a = (fun_mul_inv_snorm f p μ a) * (∫⁻ c, (f c)^p ∂μ)^(1/p) := |
| 579 | +by simp [fun_mul_inv_snorm, mul_assoc, inv_mul_cancel, hf_nonzero, hf_top] |
| 580 | + |
| 581 | +lemma fun_mul_inv_snorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ennreal} {a : α} : |
| 582 | + (fun_mul_inv_snorm f p μ a) ^ p = (f a)^p * (∫⁻ c, (f c) ^ p ∂μ)⁻¹ := |
| 583 | +begin |
| 584 | + rw [fun_mul_inv_snorm, mul_rpow_of_nonneg _ _ (le_of_lt hp0)], |
| 585 | + suffices h_inv_rpow : ((∫⁻ (c : α), f c ^ p ∂μ) ^ (1 / p))⁻¹ ^ p = (∫⁻ (c : α), f c ^ p ∂μ)⁻¹, |
| 586 | + by rw h_inv_rpow, |
| 587 | + rw [inv_rpow_of_pos hp0, ←rpow_mul, div_eq_mul_inv, one_mul, |
| 588 | + _root_.inv_mul_cancel (ne_of_lt hp0).symm, rpow_one], |
| 589 | +end |
| 590 | + |
| 591 | +lemma lintegral_rpow_fun_mul_inv_snorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α → ennreal} |
| 592 | + (hf : measurable f) (hf_nonzero : ∫⁻ a, (f a)^p ∂μ ≠ 0) (hf_top : ∫⁻ a, (f a)^p ∂μ ≠ ⊤) : |
| 593 | + ∫⁻ c, (fun_mul_inv_snorm f p μ c)^p ∂μ = 1 := |
| 594 | +begin |
| 595 | + simp_rw fun_mul_inv_snorm_rpow hp0_lt, |
| 596 | + rw [lintegral_mul_const _ hf.ennreal_rpow_const, mul_inv_cancel hf_nonzero hf_top], |
| 597 | +end |
| 598 | + |
| 599 | +/-- Hölder's inequality in case of finite non-zero integrals -/ |
| 600 | +lemma lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.is_conjugate_exponent q) |
| 601 | + {f g : α → ennreal} (hf : measurable f) (hg : measurable g) |
| 602 | + (hf_nontop : ∫⁻ a, (f a)^p ∂μ ≠ ⊤) (hg_nontop : ∫⁻ a, (g a)^q ∂μ ≠ ⊤) |
| 603 | + (hf_nonzero : ∫⁻ a, (f a)^p ∂μ ≠ 0) (hg_nonzero : ∫⁻ a, (g a)^q ∂μ ≠ 0) : |
| 604 | + ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, (f a)^p ∂μ)^(1/p) * (∫⁻ a, (g a)^q ∂μ)^(1/q) := |
| 605 | +begin |
| 606 | + let npf := (∫⁻ (c : α), (f c) ^ p ∂μ) ^ (1/p), |
| 607 | + let nqg := (∫⁻ (c : α), (g c) ^ q ∂μ) ^ (1/q), |
| 608 | + calc ∫⁻ (a : α), (f * g) a ∂μ |
| 609 | + = ∫⁻ (a : α), ((fun_mul_inv_snorm f p μ * fun_mul_inv_snorm g q μ) a) |
| 610 | + * (npf * nqg) ∂μ : |
| 611 | + begin |
| 612 | + refine lintegral_congr (λ a, _), |
| 613 | + rw [pi.mul_apply, fun_eq_fun_mul_inv_snorm_mul_snorm f hf_nonzero hf_nontop, |
| 614 | + fun_eq_fun_mul_inv_snorm_mul_snorm g hg_nonzero hg_nontop, pi.mul_apply], |
| 615 | + ring, |
| 616 | + end |
| 617 | + ... ≤ npf * nqg : |
| 618 | + begin |
| 619 | + rw lintegral_mul_const' (npf * nqg) _ (by simp [hf_nontop, hg_nontop, hf_nonzero, hg_nonzero]), |
| 620 | + nth_rewrite 1 ←one_mul (npf * nqg), |
| 621 | + refine mul_le_mul _ (le_refl (npf * nqg)), |
| 622 | + have hf1 := lintegral_rpow_fun_mul_inv_snorm_eq_one hpq.pos hf hf_nonzero hf_nontop, |
| 623 | + have hg1 := lintegral_rpow_fun_mul_inv_snorm_eq_one hpq.symm.pos hg hg_nonzero hg_nontop, |
| 624 | + exact lintegral_mul_le_one_of_lintegral_rpow_eq_one hpq (hf.ennreal_mul measurable_const) |
| 625 | + (hg.ennreal_mul measurable_const) hf1 hg1, |
| 626 | + end |
| 627 | +end |
| 628 | + |
| 629 | +lemma ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0_lt : 0 < p) {f : α → ennreal} |
| 630 | + (hf : measurable f) (hf_zero : ∫⁻ a, (f a)^p ∂μ = 0) : |
| 631 | + f =ᵐ[μ] 0 := |
| 632 | +begin |
| 633 | + rw lintegral_eq_zero_iff hf.ennreal_rpow_const at hf_zero, |
| 634 | + refine filter.eventually.mp hf_zero (filter.eventually_of_forall (λ x, _)), |
| 635 | + dsimp only, |
| 636 | + rw [pi.zero_apply, rpow_eq_zero_iff], |
| 637 | + intro hx, |
| 638 | + cases hx, |
| 639 | + { exact hx.left, }, |
| 640 | + { exfalso, |
| 641 | + linarith, }, |
| 642 | +end |
| 643 | + |
| 644 | +lemma lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0_lt : 0 < p) |
| 645 | + {f g : α → ennreal} (hf : measurable f) (hf_zero : ∫⁻ a, (f a)^p ∂μ = 0) : |
| 646 | + ∫⁻ a, (f * g) a ∂μ = 0 := |
| 647 | +begin |
| 648 | + rw ←@lintegral_zero_fun α _ μ, |
| 649 | + refine lintegral_congr_ae _, |
| 650 | + suffices h_mul_zero : f * g =ᵐ[μ] 0 * g , by rwa zero_mul at h_mul_zero, |
| 651 | + have hf_eq_zero : f =ᵐ[μ] 0, from ae_eq_zero_of_lintegral_rpow_eq_zero hp0_lt hf hf_zero, |
| 652 | + exact filter.eventually_eq.mul hf_eq_zero (ae_eq_refl g), |
| 653 | +end |
| 654 | + |
| 655 | +lemma lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0 < p) (hq0 : 0 ≤ q) |
| 656 | + {f g : α → ennreal} (hf_top : ∫⁻ a, (f a)^p ∂μ = ⊤) (hg_nonzero : ∫⁻ a, (g a)^q ∂μ ≠ 0) : |
| 657 | + ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, (f a)^p ∂μ) ^ (1/p) * (∫⁻ a, (g a)^q ∂μ) ^ (1/q) := |
| 658 | +begin |
| 659 | + refine le_trans le_top (le_of_eq _), |
| 660 | + have hp0_inv_lt : 0 < 1/p, by simp [hp0_lt], |
| 661 | + rw [hf_top, ennreal.top_rpow_of_pos hp0_inv_lt], |
| 662 | + simp [hq0, hg_nonzero], |
| 663 | +end |
| 664 | + |
| 665 | +/-- Hölder's inequality for functions `α → ennreal`. The integral of the product of two functions |
| 666 | +is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate |
| 667 | +exponents. -/ |
| 668 | +theorem lintegral_mul_le_Lp_mul_Lq (μ : measure α) {p q : ℝ} (hpq : p.is_conjugate_exponent q) |
| 669 | + {f g : α → ennreal} (hf : measurable f) (hg : measurable g) : |
| 670 | + ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, (f a)^p ∂μ) ^ (1/p) * (∫⁻ a, (g a)^q ∂μ) ^ (1/q) := |
| 671 | +begin |
| 672 | + by_cases hf_zero : ∫⁻ a, (f a) ^ p ∂μ = 0, |
| 673 | + { refine le_trans (le_of_eq _) (zero_le _), |
| 674 | + exact lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero hpq.pos hf hf_zero, }, |
| 675 | + by_cases hg_zero : ∫⁻ a, (g a) ^ q ∂μ = 0, |
| 676 | + { refine le_trans (le_of_eq _) (zero_le _), |
| 677 | + rw mul_comm, |
| 678 | + exact lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero hpq.symm.pos hg hg_zero, }, |
| 679 | + by_cases hf_top : ∫⁻ a, (f a) ^ p ∂μ = ⊤, |
| 680 | + { exact lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top hpq.pos hpq.symm.nonneg hf_top hg_zero, }, |
| 681 | + by_cases hg_top : ∫⁻ a, (g a) ^ q ∂μ = ⊤, |
| 682 | + { rw [mul_comm, mul_comm ((∫⁻ (a : α), (f a) ^ p ∂μ) ^ (1 / p))], |
| 683 | + exact lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top hpq.symm.pos hpq.nonneg hg_top hf_zero, }, |
| 684 | + -- non-⊤ non-zero case |
| 685 | + exact ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top hpq hf hg hf_top hg_top hf_zero |
| 686 | + hg_zero, |
| 687 | +end |
| 688 | + |
| 689 | +end ennreal |
| 690 | + |
| 691 | +/-- Hölder's inequality for functions `α → nnreal`. The integral of the product of two functions |
| 692 | +is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate |
| 693 | +exponents. -/ |
| 694 | +theorem nnreal.lintegral_mul_le_Lp_mul_Lq {p q : ℝ} (hpq : p.is_conjugate_exponent q) |
| 695 | + {f g : α → nnreal} (hf : measurable f) (hg : measurable g) : |
| 696 | + ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, (f a)^p ∂μ)^(1/p) * (∫⁻ a, (g a)^q ∂μ)^(1/q) := |
| 697 | +begin |
| 698 | + simp_rw [pi.mul_apply, ennreal.coe_mul], |
| 699 | + exact ennreal.lintegral_mul_le_Lp_mul_Lq μ hpq hf.ennreal_coe hg.ennreal_coe, |
| 700 | +end |
| 701 | + |
| 702 | +end lintegral |
0 commit comments