@@ -5,6 +5,7 @@ Authors: Oliver Nash
5
5
-/
6
6
import algebra.lie.free
7
7
import algebra.lie.quotient
8
+ import data.matrix.notation
8
9
9
10
/-!
10
11
# Lie algebras from Cartan matrices
@@ -42,15 +43,35 @@ However the difference is illusory since the construction stays inside the Lie s
42
43
`free_algebra R X` generated by `X`, and this is naturally isomorphic to `free_lie_algebra R X`
43
44
(though the proof of this seems to require Poincaré–Birkhoff–Witt).
44
45
46
+ ## Definitions of exceptional Lie algebras
47
+
48
+ This file also contains the Cartan matrices of the exceptional Lie algebras. By using these in the
49
+ above construction, it thus provides definitions of the exceptional Lie algebras. These definitions
50
+ make sense over any commutative ring. When the ring is ℝ, these are the split real forms of the
51
+ exceptional semisimple Lie algebras.
52
+
45
53
## References
46
54
55
+ * [ N. Bourbaki, *Lie Groups and Lie Algebras, Chapters 4--6* ] (bourbaki1968) plates V -- IX,
56
+ pages 275--290
57
+
47
58
* [ N. Bourbaki, *Lie Groups and Lie Algebras, Chapters 7--9* ] (bourbaki1975b) chapter VIII, §4.3
48
59
49
60
* [ J.P. Serre, *Complex Semisimple Lie Algebras* ] (serre1965) chapter VI, appendix
50
61
51
62
## Main definitions
52
63
53
64
* `matrix.to_lie_algebra`
65
+ * `cartan_matrix.E₆`
66
+ * `cartan_matrix.E₇`
67
+ * `cartan_matrix.E₈`
68
+ * `cartan_matrix.F₄`
69
+ * `cartan_matrix.G₂`
70
+ * `lie_algebra.e₆`
71
+ * `lie_algebra.e₇`
72
+ * `lie_algebra.e₈`
73
+ * `lie_algebra.f₄`
74
+ * `lie_algebra.g₂`
54
75
55
76
## Tags
56
77
@@ -147,7 +168,102 @@ end cartan_matrix
147
168
148
169
Note that it is defined for any matrix of integers. Its value for non-Cartan matrices should be
149
170
regarded as junk. -/
150
- @[derive [lie_ring, lie_algebra R] ]
171
+ @[derive [inhabited, lie_ring, lie_algebra R] ]
151
172
def matrix.to_lie_algebra := (cartan_matrix.relations.to_ideal R A).quotient
152
173
153
- instance (A : matrix B B ℤ) : inhabited (matrix.to_lie_algebra R A) := ⟨0 ⟩
174
+ namespace cartan_matrix
175
+
176
+ /-- The Cartan matrix of type e₆. See [ bourbaki1968 ] plate V, page 277.
177
+
178
+ The corresponding Dynkin diagram is:
179
+ ```
180
+ o
181
+ |
182
+ o --- o --- o --- o --- o
183
+ ```
184
+ -/
185
+ def E₆ : matrix (fin 6 ) (fin 6 ) ℤ := ![![ 2 , 0 , -1 , 0 , 0 , 0 ],
186
+ ![ 0 , 2 , 0 , -1 , 0 , 0 ],
187
+ ![-1 , 0 , 2 , -1 , 0 , 0 ],
188
+ ![ 0 , -1 , -1 , 2 , -1 , 0 ],
189
+ ![ 0 , 0 , 0 , -1 , 2 , -1 ],
190
+ ![ 0 , 0 , 0 , 0 , -1 , 2 ]]
191
+
192
+ /-- The Cartan matrix of type e₇. See [ bourbaki1968 ] plate VI, page 281.
193
+
194
+ The corresponding Dynkin diagram is:
195
+ ```
196
+ o
197
+ |
198
+ o --- o --- o --- o --- o --- o
199
+ ```
200
+ -/
201
+ def E₇ : matrix (fin 7 ) (fin 7 ) ℤ := ![![ 2 , 0 , -1 , 0 , 0 , 0 , 0 ],
202
+ ![ 0 , 2 , 0 , -1 , 0 , 0 , 0 ],
203
+ ![-1 , 0 , 2 , -1 , 0 , 0 , 0 ],
204
+ ![ 0 , -1 , -1 , 2 , -1 , 0 , 0 ],
205
+ ![ 0 , 0 , 0 , -1 , 2 , -1 , 0 ],
206
+ ![ 0 , 0 , 0 , 0 , -1 , 2 , -1 ],
207
+ ![ 0 , 0 , 0 , 0 , 0 , -1 , 2 ]]
208
+
209
+ /-- The Cartan matrix of type e₈. See [ bourbaki1968 ] plate VII, page 285.
210
+
211
+ The corresponding Dynkin diagram is:
212
+ ```
213
+ o
214
+ |
215
+ o --- o --- o --- o --- o --- o --- o
216
+ ```
217
+ -/
218
+ def E₈ : matrix (fin 8 ) (fin 8 ) ℤ := ![![ 2 , 0 , -1 , 0 , 0 , 0 , 0 , 0 ],
219
+ ![ 0 , 2 , 0 , -1 , 0 , 0 , 0 , 0 ],
220
+ ![-1 , 0 , 2 , -1 , 0 , 0 , 0 , 0 ],
221
+ ![ 0 , -1 , -1 , 2 , -1 , 0 , 0 , 0 ],
222
+ ![ 0 , 0 , 0 , -1 , 2 , -1 , 0 , 0 ],
223
+ ![ 0 , 0 , 0 , 0 , -1 , 2 , -1 , 0 ],
224
+ ![ 0 , 0 , 0 , 0 , 0 , -1 , 2 , -1 ],
225
+ ![ 0 , 0 , 0 , 0 , 0 , 0 , -1 , 2 ]]
226
+
227
+ /-- The Cartan matrix of type f₄. See [ bourbaki1968 ] plate VIII, page 288.
228
+
229
+ The corresponding Dynkin diagram is:
230
+ ```
231
+ o --- o =>= o --- o
232
+ ```
233
+ -/
234
+ def F₄ : matrix (fin 4 ) (fin 4 ) ℤ := ![![ 2 , -1 , 0 , 0 ],
235
+ ![-1 , 2 , -2 , 0 ],
236
+ ![ 0 , -1 , 2 , -1 ],
237
+ ![ 0 , 0 , -1 , 2 ]]
238
+
239
+ /-- The Cartan matrix of type g₂. See [ bourbaki1968 ] plate IX, page 290.
240
+
241
+ The corresponding Dynkin diagram is:
242
+ ```
243
+ o ≡>≡ o
244
+ ```
245
+ Actually we are using the transpose of Bourbaki's matrix. This is to make this matrix consistent
246
+ with `cartan_matrix.F₄`, in the sense that all non-zero values below the diagonal are -1. -/
247
+ def G₂ : matrix (fin 2 ) (fin 2 ) ℤ := ![![ 2 , -3 ],
248
+ ![-1 , 2 ]]
249
+
250
+ end cartan_matrix
251
+
252
+ namespace lie_algebra
253
+
254
+ /-- The exceptional split Lie algebra of type e₆. -/
255
+ abbreviation e₆ := cartan_matrix.E₆.to_lie_algebra R
256
+
257
+ /-- The exceptional split Lie algebra of type e₇. -/
258
+ abbreviation e₇ := cartan_matrix.E₇.to_lie_algebra R
259
+
260
+ /-- The exceptional split Lie algebra of type e₈. -/
261
+ abbreviation e₈ := cartan_matrix.E₈.to_lie_algebra R
262
+
263
+ /-- The exceptional split Lie algebra of type f₄. -/
264
+ abbreviation f₄ := cartan_matrix.F₄.to_lie_algebra R
265
+
266
+ /-- The exceptional split Lie algebra of type g₂. -/
267
+ abbreviation g₂ := cartan_matrix.G₂.to_lie_algebra R
268
+
269
+ end lie_algebra
0 commit comments