Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 66055dd

Browse files
committed
feat(algebra/lie/cartan_matrix): define the exceptional Lie algebras (#8299)
1 parent bc1f145 commit 66055dd

File tree

2 files changed

+132
-2
lines changed

2 files changed

+132
-2
lines changed

docs/references.bib

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -181,6 +181,20 @@ @Book{ bourbaki1975
181181
mrnumber = {1728312}
182182
}
183183

184+
@Book{ bourbaki1968,
185+
author = {Bourbaki, Nicolas},
186+
title = {Lie groups and {L}ie algebras. {C}hapters 4--6},
187+
series = {Elements of Mathematics (Berlin)},
188+
note = {Translated from the 1968 French original by Andrew
189+
Pressley},
190+
publisher = {Springer-Verlag, Berlin},
191+
year = {2002},
192+
pages = {xii+300},
193+
isbn = {3-540-42650-7},
194+
mrclass = {17-01 (00A05 20E42 20F55 22-01)},
195+
mrnumber = {1890629}
196+
}
197+
184198
@Book{ bourbaki1975b,
185199
author = {Bourbaki, Nicolas},
186200
title = {Lie groups and {L}ie algebras. {C}hapters 7--9},

src/algebra/lie/cartan_matrix.lean

Lines changed: 118 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@ Authors: Oliver Nash
55
-/
66
import algebra.lie.free
77
import algebra.lie.quotient
8+
import data.matrix.notation
89

910
/-!
1011
# Lie algebras from Cartan matrices
@@ -42,15 +43,35 @@ However the difference is illusory since the construction stays inside the Lie s
4243
`free_algebra R X` generated by `X`, and this is naturally isomorphic to `free_lie_algebra R X`
4344
(though the proof of this seems to require Poincaré–Birkhoff–Witt).
4445
46+
## Definitions of exceptional Lie algebras
47+
48+
This file also contains the Cartan matrices of the exceptional Lie algebras. By using these in the
49+
above construction, it thus provides definitions of the exceptional Lie algebras. These definitions
50+
make sense over any commutative ring. When the ring is ℝ, these are the split real forms of the
51+
exceptional semisimple Lie algebras.
52+
4553
## References
4654
55+
* [N. Bourbaki, *Lie Groups and Lie Algebras, Chapters 4--6*](bourbaki1968) plates V -- IX,
56+
pages 275--290
57+
4758
* [N. Bourbaki, *Lie Groups and Lie Algebras, Chapters 7--9*](bourbaki1975b) chapter VIII, §4.3
4859
4960
* [J.P. Serre, *Complex Semisimple Lie Algebras*](serre1965) chapter VI, appendix
5061
5162
## Main definitions
5263
5364
* `matrix.to_lie_algebra`
65+
* `cartan_matrix.E₆`
66+
* `cartan_matrix.E₇`
67+
* `cartan_matrix.E₈`
68+
* `cartan_matrix.F₄`
69+
* `cartan_matrix.G₂`
70+
* `lie_algebra.e₆`
71+
* `lie_algebra.e₇`
72+
* `lie_algebra.e₈`
73+
* `lie_algebra.f₄`
74+
* `lie_algebra.g₂`
5475
5576
## Tags
5677
@@ -147,7 +168,102 @@ end cartan_matrix
147168
148169
Note that it is defined for any matrix of integers. Its value for non-Cartan matrices should be
149170
regarded as junk. -/
150-
@[derive [lie_ring, lie_algebra R]]
171+
@[derive [inhabited, lie_ring, lie_algebra R]]
151172
def matrix.to_lie_algebra := (cartan_matrix.relations.to_ideal R A).quotient
152173

153-
instance (A : matrix B B ℤ) : inhabited (matrix.to_lie_algebra R A) := ⟨0
174+
namespace cartan_matrix
175+
176+
/-- The Cartan matrix of type e₆. See [bourbaki1968] plate V, page 277.
177+
178+
The corresponding Dynkin diagram is:
179+
```
180+
o
181+
|
182+
o --- o --- o --- o --- o
183+
```
184+
-/
185+
def E₆ : matrix (fin 6) (fin 6) ℤ := ![![ 2, 0, -1, 0, 0, 0],
186+
![ 0, 2, 0, -1, 0, 0],
187+
![-1, 0, 2, -1, 0, 0],
188+
![ 0, -1, -1, 2, -1, 0],
189+
![ 0, 0, 0, -1, 2, -1],
190+
![ 0, 0, 0, 0, -1, 2]]
191+
192+
/-- The Cartan matrix of type e₇. See [bourbaki1968] plate VI, page 281.
193+
194+
The corresponding Dynkin diagram is:
195+
```
196+
o
197+
|
198+
o --- o --- o --- o --- o --- o
199+
```
200+
-/
201+
def E₇ : matrix (fin 7) (fin 7) ℤ := ![![ 2, 0, -1, 0, 0, 0, 0],
202+
![ 0, 2, 0, -1, 0, 0, 0],
203+
![-1, 0, 2, -1, 0, 0, 0],
204+
![ 0, -1, -1, 2, -1, 0, 0],
205+
![ 0, 0, 0, -1, 2, -1, 0],
206+
![ 0, 0, 0, 0, -1, 2, -1],
207+
![ 0, 0, 0, 0, 0, -1, 2]]
208+
209+
/-- The Cartan matrix of type e₈. See [bourbaki1968] plate VII, page 285.
210+
211+
The corresponding Dynkin diagram is:
212+
```
213+
o
214+
|
215+
o --- o --- o --- o --- o --- o --- o
216+
```
217+
-/
218+
def E₈ : matrix (fin 8) (fin 8) ℤ := ![![ 2, 0, -1, 0, 0, 0, 0, 0],
219+
![ 0, 2, 0, -1, 0, 0, 0, 0],
220+
![-1, 0, 2, -1, 0, 0, 0, 0],
221+
![ 0, -1, -1, 2, -1, 0, 0, 0],
222+
![ 0, 0, 0, -1, 2, -1, 0, 0],
223+
![ 0, 0, 0, 0, -1, 2, -1, 0],
224+
![ 0, 0, 0, 0, 0, -1, 2, -1],
225+
![ 0, 0, 0, 0, 0, 0, -1, 2]]
226+
227+
/-- The Cartan matrix of type f₄. See [bourbaki1968] plate VIII, page 288.
228+
229+
The corresponding Dynkin diagram is:
230+
```
231+
o --- o =>= o --- o
232+
```
233+
-/
234+
def F₄ : matrix (fin 4) (fin 4) ℤ := ![![ 2, -1, 0, 0],
235+
![-1, 2, -2, 0],
236+
![ 0, -1, 2, -1],
237+
![ 0, 0, -1, 2]]
238+
239+
/-- The Cartan matrix of type g₂. See [bourbaki1968] plate IX, page 290.
240+
241+
The corresponding Dynkin diagram is:
242+
```
243+
o ≡>≡ o
244+
```
245+
Actually we are using the transpose of Bourbaki's matrix. This is to make this matrix consistent
246+
with `cartan_matrix.F₄`, in the sense that all non-zero values below the diagonal are -1. -/
247+
def G₂ : matrix (fin 2) (fin 2) ℤ := ![![ 2, -3],
248+
![-1, 2]]
249+
250+
end cartan_matrix
251+
252+
namespace lie_algebra
253+
254+
/-- The exceptional split Lie algebra of type e₆. -/
255+
abbreviation e₆ := cartan_matrix.E₆.to_lie_algebra R
256+
257+
/-- The exceptional split Lie algebra of type e₇. -/
258+
abbreviation e₇ := cartan_matrix.E₇.to_lie_algebra R
259+
260+
/-- The exceptional split Lie algebra of type e₈. -/
261+
abbreviation e₈ := cartan_matrix.E₈.to_lie_algebra R
262+
263+
/-- The exceptional split Lie algebra of type f₄. -/
264+
abbreviation f₄ := cartan_matrix.F₄.to_lie_algebra R
265+
266+
/-- The exceptional split Lie algebra of type g₂. -/
267+
abbreviation g₂ := cartan_matrix.G₂.to_lie_algebra R
268+
269+
end lie_algebra

0 commit comments

Comments
 (0)