Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 66a86ff

Browse files
jcommelinChrisHughes24
authored andcommitted
refactor(*): rename is_group_hom.mul to map_mul (#911)
* refactor(*): rename is_group_hom.mul to map_mul * Fix splits_mul
1 parent eb024dc commit 66a86ff

18 files changed

+153
-155
lines changed

src/algebra/big_operators.lean

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -615,38 +615,38 @@ section group
615615
open list
616616
variables [group α] [group β]
617617

618-
@[to_additive is_add_group_hom.sum]
619-
theorem is_group_hom.prod (f : α → β) [is_group_hom f] (l : list α) :
618+
@[to_additive is_add_group_hom.map_sum]
619+
theorem is_group_hom.map_prod (f : α → β) [is_group_hom f] (l : list α) :
620620
f (prod l) = prod (map f l) :=
621-
by induction l; simp only [*, is_group_hom.mul f, is_group_hom.one f, prod_nil, prod_cons, map]
621+
by induction l; simp only [*, is_group_hom.map_mul f, is_group_hom.map_one f, prod_nil, prod_cons, map]
622622

623-
theorem is_group_anti_hom.prod (f : α → β) [is_group_anti_hom f] (l : list α) :
623+
theorem is_group_anti_hom.map_prod (f : α → β) [is_group_anti_hom f] (l : list α) :
624624
f (prod l) = prod (map f (reverse l)) :=
625-
by induction l with hd tl ih; [exact is_group_anti_hom.one f,
626-
simp only [prod_cons, is_group_anti_hom.mul f, ih, reverse_cons, map_append, prod_append, map_singleton, prod_cons, prod_nil, mul_one]]
625+
by induction l with hd tl ih; [exact is_group_anti_hom.map_one f,
626+
simp only [prod_cons, is_group_anti_hom.map_mul f, ih, reverse_cons, map_append, prod_append, map_singleton, prod_cons, prod_nil, mul_one]]
627627

628628
theorem inv_prod : ∀ l : list α, (prod l)⁻¹ = prod (map (λ x, x⁻¹) (reverse l)) :=
629-
λ l, @is_group_anti_hom.prod _ _ _ _ _ inv_is_group_anti_hom l -- TODO there is probably a cleaner proof of this
629+
λ l, @is_group_anti_hom.map_prod _ _ _ _ _ inv_is_group_anti_hom l -- TODO there is probably a cleaner proof of this
630630

631631
end group
632632

633633
section comm_group
634634
variables [comm_group α] [comm_group β] (f : α → β) [is_group_hom f]
635635

636636
@[to_additive is_add_group_hom.multiset_sum]
637-
lemma is_group_hom.multiset_prod (m : multiset α) : f m.prod = (m.map f).prod :=
638-
quotient.induction_on m $ assume l, by simp [is_group_hom.prod f l]
637+
lemma is_group_hom.map_multiset_prod (m : multiset α) : f m.prod = (m.map f).prod :=
638+
quotient.induction_on m $ assume l, by simp [is_group_hom.map_prod f l]
639639

640640
@[to_additive is_add_group_hom.finset_sum]
641641
lemma is_group_hom.finset_prod (g : γ → α) (s : finset γ) : f (s.prod g) = s.prod (f ∘ g) :=
642-
show f (s.val.map g).prod = (s.val.map (f ∘ g)).prod, by rw [is_group_hom.multiset_prod f]; simp
642+
show f (s.val.map g).prod = (s.val.map (f ∘ g)).prod, by rw [is_group_hom.map_multiset_prod f]; simp
643643

644644
end comm_group
645645

646646
@[to_additive is_add_group_hom_finset_sum]
647647
lemma is_group_hom_finset_prod {α β γ} [group α] [comm_group β] (s : finset γ)
648648
(f : γ → α → β) [∀c, is_group_hom (f c)] : is_group_hom (λa, s.prod (λc, f c a)) :=
649-
⟨assume a b, by simp only [λc, is_group_hom.mul (f c), finset.prod_mul_distrib]⟩
649+
⟨assume a b, by simp only [λc, is_group_hom.map_mul (f c), finset.prod_mul_distrib]⟩
650650

651651
attribute [instance] is_group_hom_finset_prod is_add_group_hom_finset_sum
652652

src/algebra/direct_sum.lean

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -33,31 +33,31 @@ instance mk.is_add_group_hom (s : finset ι) : is_add_group_hom (mk β s) :=
3333
⟨λ _ _, dfinsupp.mk_add⟩
3434

3535
@[simp] lemma mk_zero (s : finset ι) : mk β s 0 = 0 :=
36-
is_add_group_hom.zero _
36+
is_add_group_hom.map_zero _
3737

3838
@[simp] lemma mk_add (s : finset ι) (x y) : mk β s (x + y) = mk β s x + mk β s y :=
39-
is_add_group_hom.add _ x y
39+
is_add_group_hom.map_add _ x y
4040

4141
@[simp] lemma mk_neg (s : finset ι) (x) : mk β s (-x) = -mk β s x :=
42-
is_add_group_hom.neg _ x
42+
is_add_group_hom.map_neg _ x
4343

4444
@[simp] lemma mk_sub (s : finset ι) (x y) : mk β s (x - y) = mk β s x - mk β s y :=
45-
is_add_group_hom.sub _ x y
45+
is_add_group_hom.map_sub _ x y
4646

4747
instance of.is_add_group_hom (i : ι) : is_add_group_hom (of β i) :=
4848
⟨λ _ _, dfinsupp.single_add⟩
4949

5050
@[simp] lemma of_zero (i : ι) : of β i 0 = 0 :=
51-
is_add_group_hom.zero _
51+
is_add_group_hom.map_zero _
5252

5353
@[simp] lemma of_add (i : ι) (x y) : of β i (x + y) = of β i x + of β i y :=
54-
is_add_group_hom.add _ x y
54+
is_add_group_hom.map_add _ x y
5555

5656
@[simp] lemma of_neg (i : ι) (x) : of β i (-x) = -of β i x :=
57-
is_add_group_hom.neg _ x
57+
is_add_group_hom.map_neg _ x
5858

5959
@[simp] lemma of_sub (i : ι) (x y) : of β i (x - y) = of β i x - of β i y :=
60-
is_add_group_hom.sub _ x y
60+
is_add_group_hom.map_sub _ x y
6161

6262
theorem mk_inj (s : finset ι) : function.injective (mk β s) :=
6363
dfinsupp.mk_inj s
@@ -88,11 +88,11 @@ begin
8888
refine (finset.sum_subset H1 _).symm.trans ((finset.sum_congr rfl _).trans (finset.sum_subset H2 _)),
8989
{ intros i H1 H2, rw finset.mem_inter at H2, rw H i,
9090
simp only [multiset.mem_to_finset] at H1 H2,
91-
rw [(y.3 i).resolve_left (mt (and.intro H1) H2), is_add_group_hom.zero (φ i)] },
91+
rw [(y.3 i).resolve_left (mt (and.intro H1) H2), is_add_group_hom.map_zero (φ i)] },
9292
{ intros i H1, rw H i },
9393
{ intros i H1 H2, rw finset.mem_inter at H2, rw ← H i,
9494
simp only [multiset.mem_to_finset] at H1 H2,
95-
rw [(x.3 i).resolve_left (mt (λ H3, and.intro H3 H1) H2), is_add_group_hom.zero (φ i)] }
95+
rw [(x.3 i).resolve_left (mt (λ H3, and.intro H3 H1) H2), is_add_group_hom.map_zero (φ i)] }
9696
end
9797
variables {φ}
9898

@@ -102,31 +102,31 @@ begin
102102
refine quotient.induction_on f (λ x, _),
103103
refine quotient.induction_on g (λ y, _),
104104
change finset.sum _ _ = finset.sum _ _ + finset.sum _ _,
105-
simp only, conv { to_lhs, congr, skip, funext, rw is_add_group_hom.add (φ i) },
105+
simp only, conv { to_lhs, congr, skip, funext, rw is_add_group_hom.map_add (φ i) },
106106
simp only [finset.sum_add_distrib],
107107
congr' 1,
108108
{ refine (finset.sum_subset _ _).symm,
109109
{ intro i, simp only [multiset.mem_to_finset, multiset.mem_add], exact or.inl },
110110
{ intros i H1 H2, simp only [multiset.mem_to_finset, multiset.mem_add] at H2,
111-
rw [(x.3 i).resolve_left H2, is_add_group_hom.zero (φ i)] } },
111+
rw [(x.3 i).resolve_left H2, is_add_group_hom.map_zero (φ i)] } },
112112
{ refine (finset.sum_subset _ _).symm,
113113
{ intro i, simp only [multiset.mem_to_finset, multiset.mem_add], exact or.inr },
114114
{ intros i H1 H2, simp only [multiset.mem_to_finset, multiset.mem_add] at H2,
115-
rw [(y.3 i).resolve_left H2, is_add_group_hom.zero (φ i)] } }
115+
rw [(y.3 i).resolve_left H2, is_add_group_hom.map_zero (φ i)] } }
116116
end
117117

118118
variables (φ)
119119
@[simp] lemma to_group_zero : to_group φ 0 = 0 :=
120-
is_add_group_hom.zero _
120+
is_add_group_hom.map_zero _
121121

122122
@[simp] lemma to_group_add (x y) : to_group φ (x + y) = to_group φ x + to_group φ y :=
123-
is_add_group_hom.add _ x y
123+
is_add_group_hom.map_add _ x y
124124

125125
@[simp] lemma to_group_neg (x) : to_group φ (-x) = -to_group φ x :=
126-
is_add_group_hom.neg _ x
126+
is_add_group_hom.map_neg _ x
127127

128128
@[simp] lemma to_group_sub (x y) : to_group φ (x - y) = to_group φ x - to_group φ y :=
129-
is_add_group_hom.sub _ x y
129+
is_add_group_hom.map_sub _ x y
130130

131131
@[simp] lemma to_group_of (i) (x : β i) : to_group φ (of β i x) = φ i x :=
132132
(add_zero _).trans $ congr_arg (φ i) $ show (if H : i ∈ finset.singleton i then x else 0) = x,
@@ -136,9 +136,9 @@ variables (ψ : direct_sum ι β → γ) [is_add_group_hom ψ]
136136

137137
theorem to_group.unique (f : direct_sum ι β) : ψ f = to_group (λ i, ψ ∘ of β i) f :=
138138
direct_sum.induction_on f
139-
(by rw [is_add_group_hom.zero ψ, is_add_group_hom.zero (to_group (λ i, ψ ∘ of β i))])
139+
(by rw [is_add_group_hom.map_zero ψ, is_add_group_hom.map_zero (to_group (λ i, ψ ∘ of β i))])
140140
(λ i x, by rw [to_group_of])
141-
(λ x y ihx ihy, by rw [is_add_group_hom.add ψ, is_add_group_hom.add (to_group (λ i, ψ ∘ of β i)), ihx, ihy])
141+
(λ x y ihx ihy, by rw [is_add_group_hom.map_add ψ, is_add_group_hom.map_add (to_group (λ i, ψ ∘ of β i)), ihx, ihy])
142142

143143
variables (β)
144144
def set_to_set (S T : set ι) (H : S ⊆ T) :

src/algebra/group.lean

Lines changed: 36 additions & 38 deletions
Original file line numberDiff line numberDiff line change
@@ -664,14 +664,12 @@ by refine_struct {..}; simp [add_mul]
664664

665665
end is_monoid_hom
666666

667-
-- TODO rename fields of is_group_hom: mul ↝ map_mul?
668-
669667
/-- Predicate for group homomorphism. -/
670668
class is_group_hom [group α] [group β] (f : α → β) : Prop :=
671-
(mul : ∀ a b : α, f (a * b) = f a * f b)
669+
(map_mul : ∀ a b : α, f (a * b) = f a * f b)
672670

673671
class is_add_group_hom [add_group α] [add_group β] (f : α → β) : Prop :=
674-
(add : ∀ a b, f (a + b) = f a + f b)
672+
(map_add : ∀ a b, f (a + b) = f a + f b)
675673

676674
attribute [to_additive is_add_group_hom] is_group_hom
677675
attribute [to_additive is_add_group_hom.cases_on] is_group_hom.cases_on
@@ -680,29 +678,29 @@ attribute [to_additive is_add_group_hom.rec] is_group_hom.rec
680678
attribute [to_additive is_add_group_hom.drec] is_group_hom.drec
681679
attribute [to_additive is_add_group_hom.rec_on] is_group_hom.rec_on
682680
attribute [to_additive is_add_group_hom.drec_on] is_group_hom.drec_on
683-
attribute [to_additive is_add_group_hom.add] is_group_hom.mul
681+
attribute [to_additive is_add_group_hom.map_add] is_group_hom.map_mul
684682
attribute [to_additive is_add_group_hom.mk] is_group_hom.mk
685683

686684
instance additive.is_add_group_hom [group α] [group β] (f : α → β) [is_group_hom f] :
687685
@is_add_group_hom (additive α) (additive β) _ _ f :=
688-
⟨@is_group_hom.mul α β _ _ f _⟩
686+
⟨@is_group_hom.map_mul α β _ _ f _⟩
689687

690688
instance multiplicative.is_group_hom [add_group α] [add_group β] (f : α → β) [is_add_group_hom f] :
691689
@is_group_hom (multiplicative α) (multiplicative β) _ _ f :=
692-
⟨@is_add_group_hom.add α β _ _ f _⟩
690+
⟨@is_add_group_hom.map_add α β _ _ f _⟩
693691

694692
attribute [to_additive additive.is_add_group_hom] multiplicative.is_group_hom
695693

696694
namespace is_group_hom
697695
variables [group α] [group β] (f : α → β) [is_group_hom f]
698696

699-
@[to_additive is_add_group_hom.zero]
700-
theorem one : f 1 = 1 :=
701-
mul_self_iff_eq_one.1 $ by rw [← mul f, one_mul]
697+
@[to_additive is_add_group_hom.map_zero]
698+
theorem map_one : f 1 = 1 :=
699+
mul_self_iff_eq_one.1 $ by rw [← map_mul f, one_mul]
702700

703-
@[to_additive is_add_group_hom.neg]
704-
theorem inv (a : α) : f a⁻¹ = (f a)⁻¹ :=
705-
eq_inv_of_mul_eq_one $ by rw [← mul f, inv_mul_self, one f]
701+
@[to_additive is_add_group_hom.map_neg]
702+
theorem map_inv (a : α) : f a⁻¹ = (f a)⁻¹ :=
703+
eq_inv_of_mul_eq_one $ by rw [← map_mul f, inv_mul_self, map_one f]
706704

707705
@[to_additive is_add_group_hom.id]
708706
instance id : is_group_hom (@id α) :=
@@ -711,42 +709,42 @@ instance id : is_group_hom (@id α) :=
711709
@[to_additive is_add_group_hom.comp]
712710
instance comp {γ} [group γ] (g : β → γ) [is_group_hom g] :
713711
is_group_hom (g ∘ f) :=
714-
⟨λ x y, show g _ = g _ * g _, by rw [mul f, mul g]⟩
712+
⟨λ x y, show g _ = g _ * g _, by rw [map_mul f, map_mul g]⟩
715713

716714
protected lemma is_conj (f : α → β) [is_group_hom f] {a b : α} : is_conj a b → is_conj (f a) (f b)
717-
| ⟨c, hc⟩ := ⟨f c, by rw [← is_group_hom.mul f, ← is_group_hom.inv f, ← is_group_hom.mul f, hc]⟩
715+
| ⟨c, hc⟩ := ⟨f c, by rw [← is_group_hom.map_mul f, ← is_group_hom.map_inv f, ← is_group_hom.map_mul f, hc]⟩
718716

719717
@[to_additive is_add_group_hom.to_is_add_monoid_hom]
720718
lemma to_is_monoid_hom (f : α → β) [is_group_hom f] : is_monoid_hom f :=
721-
⟨is_group_hom.one f, is_group_hom.mul f⟩
719+
⟨is_group_hom.map_one f, is_group_hom.map_mul f⟩
722720

723721
@[to_additive is_add_group_hom.injective_iff]
724722
lemma injective_iff (f : α → β) [is_group_hom f] :
725723
function.injective f ↔ (∀ a, f a = 1 → a = 1) :=
726-
⟨λ h _, by rw ← is_group_hom.one f; exact @h _ _,
727-
λ h x y hxy, by rw [← inv_inv (f x), inv_eq_iff_mul_eq_one, ← is_group_hom.inv f,
728-
← is_group_hom.mul f] at hxy;
724+
⟨λ h _, by rw ← is_group_hom.map_one f; exact @h _ _,
725+
λ h x y hxy, by rw [← inv_inv (f x), inv_eq_iff_mul_eq_one, ← is_group_hom.map_inv f,
726+
← is_group_hom.map_mul f] at hxy;
729727
simpa using inv_eq_of_mul_eq_one (h _ hxy)⟩
730728

731729
attribute [instance] is_group_hom.to_is_monoid_hom
732730
is_add_group_hom.to_is_add_monoid_hom
733731

734732
end is_group_hom
735733

736-
@[to_additive is_add_group_hom_add]
737-
lemma is_group_hom_mul {α β} [group α] [comm_group β]
734+
@[to_additive is_add_group_hom.add]
735+
lemma is_group_hom.mul {α β} [group α] [comm_group β]
738736
(f g : α → β) [is_group_hom f] [is_group_hom g] :
739737
is_group_hom (λa, f a * g a) :=
740-
⟨assume a b, by simp only [is_group_hom.mul f, is_group_hom.mul g, mul_comm, mul_assoc, mul_left_comm]⟩
738+
⟨assume a b, by simp only [is_group_hom.map_mul f, is_group_hom.map_mul g, mul_comm, mul_assoc, mul_left_comm]⟩
741739

742-
attribute [instance] is_group_hom_mul is_add_group_hom_add
740+
attribute [instance] is_group_hom.mul is_add_group_hom.add
743741

744-
@[to_additive is_add_group_hom_neg]
745-
lemma is_group_hom_inv {α β} [group α] [comm_group β] (f : α → β) [is_group_hom f] :
742+
@[to_additive is_add_group_hom.neg]
743+
lemma is_group_hom.inv {α β} [group α] [comm_group β] (f : α → β) [is_group_hom f] :
746744
is_group_hom (λa, (f a)⁻¹) :=
747-
⟨assume a b, by rw [is_group_hom.mul f, mul_inv]⟩
745+
⟨assume a b, by rw [is_group_hom.map_mul f, mul_inv]⟩
748746

749-
attribute [instance] is_group_hom_inv is_add_group_hom_neg
747+
attribute [instance] is_group_hom.inv is_add_group_hom.neg
750748

751749
@[to_additive neg.is_add_group_hom]
752750
lemma inv.is_group_hom [comm_group α] : is_group_hom (has_inv.inv : α → α) :=
@@ -757,17 +755,17 @@ attribute [instance] inv.is_group_hom neg.is_add_group_hom
757755
/-- Predicate for group anti-homomorphism, or a homomorphism
758756
into the opposite group. -/
759757
class is_group_anti_hom {β : Type*} [group α] [group β] (f : α → β) : Prop :=
760-
(mul : ∀ a b : α, f (a * b) = f b * f a)
758+
(map_mul : ∀ a b : α, f (a * b) = f b * f a)
761759

762760
namespace is_group_anti_hom
763761
variables [group α] [group β] (f : α → β) [w : is_group_anti_hom f]
764762
include w
765763

766-
theorem one : f 1 = 1 :=
767-
mul_self_iff_eq_one.1 $ by rw [← mul f, one_mul]
764+
theorem map_one : f 1 = 1 :=
765+
mul_self_iff_eq_one.1 $ by rw [← map_mul f, one_mul]
768766

769-
theorem inv (a : α) : f a⁻¹ = (f a)⁻¹ :=
770-
eq_inv_of_mul_eq_one $ by rw [← mul f, mul_inv_self, one f]
767+
theorem map_inv (a : α) : f a⁻¹ = (f a)⁻¹ :=
768+
eq_inv_of_mul_eq_one $ by rw [← map_mul f, mul_inv_self, map_one f]
771769

772770
end is_group_anti_hom
773771

@@ -777,19 +775,19 @@ theorem inv_is_group_anti_hom [group α] : is_group_anti_hom (λ x : α, x⁻¹)
777775
namespace is_add_group_hom
778776
variables [add_group α] [add_group β] (f : α → β) [is_add_group_hom f]
779777

780-
lemma sub (a b) : f (a - b) = f a - f b :=
778+
lemma map_sub (a b) : f (a - b) = f a - f b :=
781779
calc f (a - b) = f (a + -b) : rfl
782-
... = f a + f (-b) : add f _ _
783-
... = f a - f b : by simp[neg f]
780+
... = f a + f (-b) : map_add f _ _
781+
... = f a - f b : by simp[map_neg f]
784782

785783
end is_add_group_hom
786784

787-
lemma is_add_group_hom_sub {α β} [add_group α] [add_comm_group β]
785+
lemma is_add_group_hom.sub {α β} [add_group α] [add_comm_group β]
788786
(f g : α → β) [is_add_group_hom f] [is_add_group_hom g] :
789787
is_add_group_hom (λa, f a - g a) :=
790-
is_add_group_hom_add f (λa, - g a)
788+
is_add_group_hom.add f (λa, - g a)
791789

792-
attribute [instance] is_add_group_hom_sub
790+
attribute [instance] is_add_group_hom.sub
793791

794792
namespace units
795793

src/algebra/group_power.lean

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -354,27 +354,27 @@ end group
354354
namespace is_group_hom
355355
variables {β : Type v} [group α] [group β] (f : α → β) [is_group_hom f]
356356

357-
theorem pow (a : α) (n : ℕ) : f (a ^ n) = f a ^ n :=
357+
theorem map_pow (a : α) (n : ℕ) : f (a ^ n) = f a ^ n :=
358358
is_monoid_hom.map_pow f a n
359359

360-
theorem gpow (a : α) (n : ℤ) : f (a ^ n) = f a ^ n :=
361-
by cases n; [exact is_group_hom.pow f _ _,
362-
exact (is_group_hom.inv f _).trans (congr_arg _ $ is_group_hom.pow f _ _)]
360+
theorem map_gpow (a : α) (n : ℤ) : f (a ^ n) = f a ^ n :=
361+
by cases n; [exact is_group_hom.map_pow f _ _,
362+
exact (is_group_hom.map_inv f _).trans (congr_arg _ $ is_group_hom.map_pow f _ _)]
363363

364364
end is_group_hom
365365

366366
namespace is_add_group_hom
367367
variables {β : Type v} [add_group α] [add_group β] (f : α → β) [is_add_group_hom f]
368368

369-
theorem smul (a : α) (n : ℕ) : f (n • a) = n • f a :=
369+
theorem map_smul (a : α) (n : ℕ) : f (n • a) = n • f a :=
370370
is_add_monoid_hom.map_smul f a n
371371

372-
theorem gsmul (a : α) (n : ℤ) : f (gsmul n a) = gsmul n (f a) :=
372+
theorem map_gsmul (a : α) (n : ℤ) : f (gsmul n a) = gsmul n (f a) :=
373373
begin
374374
induction n using int.induction_on with z ih z ih,
375-
{ simp [is_add_group_hom.zero f] },
376-
{ simp [is_add_group_hom.add f, add_gsmul, ih] },
377-
{ simp [is_add_group_hom.add f, is_add_group_hom.neg f, add_gsmul, ih] }
375+
{ simp [is_add_group_hom.map_zero f] },
376+
{ simp [is_add_group_hom.map_add f, add_gsmul, ih] },
377+
{ simp [is_add_group_hom.map_add f, is_add_group_hom.map_neg f, add_gsmul, ih] }
378378
end
379379

380380
end is_add_group_hom
@@ -407,10 +407,10 @@ end comm_monoid
407407
section group
408408

409409
@[instance]
410-
theorem is_add_group_hom_gsmul
410+
theorem is_add_group_hom.gsmul
411411
{α β} [add_group α] [add_comm_group β] (f : α → β) [is_add_group_hom f] (z : ℤ) :
412412
is_add_group_hom (λa, gsmul z (f a)) :=
413-
⟨assume a b, by rw [is_add_group_hom.add f, gsmul_add]⟩
413+
⟨assume a b, by rw [is_add_group_hom.map_add f, gsmul_add]⟩
414414

415415
end group
416416

src/analysis/complex/exponential.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -484,7 +484,7 @@ instance angle.is_add_group_hom : is_add_group_hom (coe : ℝ → angle) :=
484484
@[simp] lemma coe_add (x y : ℝ) : ↑(x + y : ℝ) = (↑x + ↑y : angle) := rfl
485485
@[simp] lemma coe_neg (x : ℝ) : ↑(-x : ℝ) = -(↑x : angle) := rfl
486486
@[simp] lemma coe_sub (x y : ℝ) : ↑(x - y : ℝ) = (↑x - ↑y : angle) := rfl
487-
@[simp] lemma coe_gsmul (x : ℝ) (n : ℤ) : ↑(gsmul n x : ℝ) = gsmul n (↑x : angle) := is_add_group_hom.gsmul _ _ _
487+
@[simp] lemma coe_gsmul (x : ℝ) (n : ℤ) : ↑(gsmul n x : ℝ) = gsmul n (↑x : angle) := is_add_group_hom.map_gsmul _ _ _
488488
@[simp] lemma coe_two_pi : ↑(2 * π : ℝ) = (0 : angle) :=
489489
quotient.sound' ⟨-1, by dsimp only; rw [neg_one_gsmul, add_zero]⟩
490490

src/field_theory/splitting_field.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ end
6262
lemma splits_mul {f g : polynomial α} (hf : splits i f) (hg : splits i g) : splits i (f * g) :=
6363
if h : f * g = 0 then by simp [h]
6464
else or.inr $ λ p hp hpf, ((principal_ideal_domain.irreducible_iff_prime.1 hp).2.2 _ _
65-
(show p ∣ map i f * map i g, by convert hpf; rw map_mul)).elim
65+
(show p ∣ map i f * map i g, by convert hpf; rw polynomial.map_mul)).elim
6666
(hf.resolve_left (λ hf, by simpa [hf] using h) hp)
6767
(hg.resolve_left (λ hg, by simpa [hg] using h) hp)
6868

0 commit comments

Comments
 (0)