@@ -206,44 +206,39 @@ section fpow
206
206
variables [group_with_zero G₀] [topological_space G₀] [has_continuous_inv' G₀]
207
207
[has_continuous_mul G₀]
208
208
209
- lemma tendsto_fpow { x : G₀} (hx : x ≠ 0 ) (m : ℤ ) : tendsto (λ x, x ^ m) (𝓝 x) (𝓝 (x ^ m)) :=
209
+ lemma continuous_at_fpow ( x : G₀) (m : ℤ) (h : x ≠ 0 ∨ 0 ≤ m ) : continuous_at (λ x, x ^ m) x :=
210
210
begin
211
- have : ∀ y : G₀, ∀ m : ℤ, 0 < m → tendsto (λ x, x ^ m) (𝓝 y) (𝓝 (y ^ m)),
212
- { assume y m hm,
213
- lift m to ℕ using (le_of_lt hm) with k,
214
- simp only [gpow_coe_nat],
215
- exact (continuous_pow k).continuous_at.tendsto },
216
- rcases lt_trichotomy m 0 with hm | hm | hm,
217
- { have hm' : 0 < - m := by rwa neg_pos,
218
- convert (this _ (-m) hm').comp (tendsto_inv' hx) using 1 ,
219
- { ext y,
220
- simp },
221
- { congr' 1 ,
222
- simp } },
223
- { simpa [hm] using tendsto_const_nhds },
224
- { exact this _ m hm }
211
+ cases m,
212
+ { simpa only [gpow_of_nat] using continuous_at_pow x m },
213
+ { simp only [gpow_neg_succ_of_nat],
214
+ have hx : x ≠ 0 , from h.resolve_right (int.neg_succ_of_nat_lt_zero m).not_le,
215
+ exact (continuous_at_pow x (m + 1 )).inv' (pow_ne_zero _ hx) }
225
216
end
226
217
227
- lemma continuous_at_fpow {x : G₀} (hx : x ≠ 0 ) (m : ℤ) : continuous_at (λ x, x ^ m) x :=
228
- tendsto_fpow hx m
229
-
230
218
lemma continuous_on_fpow (m : ℤ) : continuous_on (λ x : G₀, x ^ m) {0 }ᶜ :=
231
- λ x hx, (continuous_at_fpow hx m).continuous_within_at
232
-
233
- variables {f : α → G₀}
219
+ λ x hx, (continuous_at_fpow _ _ (or.inl hx)).continuous_within_at
234
220
235
- lemma filter.tendsto.fpow {l : filter α} {a : G₀} (hf : tendsto f l (𝓝 a)) (ha : a ≠ 0 ) (m : ℤ) :
221
+ lemma filter.tendsto.fpow {f : α → G₀} {l : filter α} {a : G₀} (hf : tendsto f l (𝓝 a)) (m : ℤ)
222
+ (h : a ≠ 0 ∨ 0 ≤ m) :
236
223
tendsto (λ x, (f x) ^ m) l (𝓝 (a ^ m)) :=
237
- (tendsto_fpow ha m) .comp hf
224
+ (continuous_at_fpow _ m h).tendsto .comp hf
238
225
239
- variables [topological_space α ] {a : α }
226
+ variables {X : Type *} [topological_space X ] {a : X} {s : set X} {f : X → G₀ }
240
227
241
- lemma continuous_at.fpow (hf : continuous_at f a) (ha : f a ≠ 0 ) (m : ℤ ) :
228
+ lemma continuous_at.fpow (hf : continuous_at f a) (m : ℤ) (h : f a ≠ 0 ∨ 0 ≤ m ) :
242
229
continuous_at (λ x, (f x) ^ m) a :=
243
- (continuous_at_fpow ha m).comp hf
230
+ hf.fpow m h
231
+
232
+ lemma continuous_within_at.fpow (hf : continuous_within_at f s a) (m : ℤ) (h : f a ≠ 0 ∨ 0 ≤ m) :
233
+ continuous_within_at (λ x, f x ^ m) s a :=
234
+ hf.fpow m h
235
+
236
+ lemma continuous_on.fpow (hf : continuous_on f s) (m : ℤ) (h : ∀ a ∈ s, f a ≠ 0 ∨ 0 ≤ m) :
237
+ continuous_on (λ x, f x ^ m) s :=
238
+ λ a ha, (hf a ha).fpow m (h a ha)
244
239
245
- @[continuity] lemma continuous.fpow (hf : continuous f) (h0 : ∀ a, f a ≠ 0 ) (m : ℤ ) :
240
+ @[continuity] lemma continuous.fpow (hf : continuous f) (m : ℤ) ( h0 : ∀ a, f a ≠ 0 ∨ 0 ≤ m ) :
246
241
continuous (λ x, (f x) ^ m) :=
247
- continuous_iff_continuous_at.2 $ λ x, (hf.tendsto x).fpow (h0 x) m
242
+ continuous_iff_continuous_at.2 $ λ x, (hf.tendsto x).fpow m (h0 x)
248
243
249
244
end fpow
0 commit comments