Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 6ed3325

Browse files
committed
feat(category_theory/limits): limit of point iso (#3188)
Prove a cone is a limit given that the canonical morphism from it to a limiting cone is an iso.
1 parent c6fd69d commit 6ed3325

File tree

5 files changed

+30
-2
lines changed

5 files changed

+30
-2
lines changed

src/algebra/category/Group/limits.lean

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@ Authors: Scott Morrison
55
-/
66
import algebra.category.Group.basic
77
import category_theory.limits.types
8+
import category_theory.limits.preserves
89
import algebra.pi_instances
910

1011
/-!

src/category_theory/limits/creates.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ Copyright (c) 2020 Bhavik Mehta. All rights reserved.
33
Released under Apache 2.0 license as described in the file LICENSE.
44
Authors: Bhavik Mehta
55
-/
6-
import category_theory.reflect_isomorphisms
6+
import category_theory.limits.preserves
77

88
open category_theory category_theory.limits
99

src/category_theory/limits/limits.lean

Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@ Authors: Reid Barton, Mario Carneiro, Scott Morrison, Floris van Doorn
55
-/
66
import category_theory.limits.cones
77
import category_theory.adjunction.basic
8+
import category_theory.reflect_isomorphisms
89

910
open category_theory category_theory.category category_theory.functor opposite
1011

@@ -78,6 +79,19 @@ is_limit.mk_cone_morphism
7879
(λ s, P.lift_cone_morphism s ≫ i.hom)
7980
(λ s m, by rw ←i.comp_inv_eq; apply P.uniq_cone_morphism)
8081

82+
/--
83+
If the canonical morphism from a cone point to a limiting cone point is an iso, then the
84+
first cone was limiting also.
85+
-/
86+
def of_point_iso {r t : cone F} (P : is_limit r) [i : is_iso (P.lift t)] : is_limit t :=
87+
of_iso_limit P
88+
begin
89+
haveI : is_iso (P.lift_cone_morphism t).hom := i,
90+
haveI : is_iso (P.lift_cone_morphism t) := cone_iso_of_hom_iso _,
91+
symmetry,
92+
apply as_iso (P.lift_cone_morphism t),
93+
end
94+
8195
variables {t : cone F}
8296

8397
lemma hom_lift (h : is_limit t) {W : C} (m : W ⟶ t.X) :
@@ -376,6 +390,18 @@ is_colimit.mk_cocone_morphism
376390
(λ s, i.inv ≫ P.desc_cocone_morphism s)
377391
(λ s m, by rw i.eq_inv_comp; apply P.uniq_cocone_morphism)
378392

393+
/--
394+
If the canonical morphism to a cocone point from a colimiting cocone point is an iso, then the
395+
first cocone was colimiting also.
396+
-/
397+
def of_point_iso {r t : cocone F} (P : is_colimit r) [i : is_iso (P.desc t)] : is_colimit t :=
398+
of_iso_colimit P
399+
begin
400+
haveI : is_iso (P.desc_cocone_morphism t).hom := i,
401+
haveI : is_iso (P.desc_cocone_morphism t) := cocone_iso_of_hom_iso _,
402+
apply as_iso (P.desc_cocone_morphism t),
403+
end
404+
379405
variables {t : cocone F}
380406

381407
lemma hom_desc (h : is_colimit t) {W : C} (m : t.X ⟶ W) :

src/category_theory/reflect_isomorphisms.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ Copyright (c) 2020 Bhavik Mehta. All rights reserved.
33
Released under Apache 2.0 license as described in the file LICENSE.
44
Authors: Bhavik Mehta
55
-/
6-
import category_theory.limits.preserves
6+
import category_theory.limits.cones
77

88
open category_theory category_theory.limits
99

src/topology/category/Top/limits.lean

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@ Authors: Patrick Massot, Scott Morrison, Mario Carneiro
55
-/
66
import topology.category.Top.basic
77
import category_theory.limits.types
8+
import category_theory.limits.preserves
89

910
open topological_space
1011
open category_theory

0 commit comments

Comments
 (0)