Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 6f0c4fb

Browse files
feat(data/{int, nat}/parity): rename ne_of_odd_sum (#7261)
`ne_of_odd_sum` becomes `ne_of_odd_add`.
1 parent fc5e8cb commit 6f0c4fb

File tree

3 files changed

+3
-3
lines changed

3 files changed

+3
-3
lines changed

archive/imo/imo1998_q2.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -142,7 +142,7 @@ begin
142142
have h' : (x + y) * (x + y) = 4*z*z + 4*z + 1, { rw h, ring, },
143143
rw [← add_sq_add_sq_sub, h', add_le_add_iff_left],
144144
suffices : 0 < (x - y) * (x - y), { apply int.add_one_le_of_lt this, },
145-
apply mul_self_pos, rw sub_ne_zero, apply int.ne_of_odd_sum ⟨z, h⟩,
145+
apply mul_self_pos, rw sub_ne_zero, apply int.ne_of_odd_add ⟨z, h⟩,
146146
end
147147

148148
section

src/data/int/parity.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -181,7 +181,7 @@ by rw [add_comm, odd_add]
181181
theorem even.add_odd (hm : even m) (hn : odd n) : odd (m + n) :=
182182
odd_add'.2 $ iff_of_true hn hm
183183

184-
lemma ne_of_odd_sum (h : odd (m + n)) : m ≠ n :=
184+
lemma ne_of_odd_add (h : odd (m + n)) : m ≠ n :=
185185
λ hnot, by simpa [hnot] with parity_simps using h
186186

187187
@[parity_simps] theorem odd_sub : odd (m - n) ↔ (odd m ↔ even n) :=

src/data/nat/parity.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -190,7 +190,7 @@ by rw [add_comm, odd_add]
190190
theorem even.add_odd (hm : even m) (hn : odd n) : odd (m + n) :=
191191
odd_add'.2 $ iff_of_true hn hm
192192

193-
lemma ne_of_odd_sum (h : odd (m + n)) : m ≠ n :=
193+
lemma ne_of_odd_add (h : odd (m + n)) : m ≠ n :=
194194
λ hnot, by simpa [hnot] with parity_simps using h
195195

196196
@[parity_simps] theorem odd_sub (h : n ≤ m) : odd (m - n) ↔ (odd m ↔ even n) :=

0 commit comments

Comments
 (0)