@@ -355,7 +355,7 @@ by { simp only [interval_integral, integral_neg], abel }
355
355
∫ x in a..b, f x - g x ∂μ = ∫ x in a..b, f x ∂μ - ∫ x in a..b, g x ∂μ :=
356
356
by simpa only [sub_eq_add_neg] using (integral_add hf hg.neg).trans (congr_arg _ integral_neg)
357
357
358
- lemma integral_smul (r : ℝ) : ∫ x in a..b, r • f x ∂μ = r • ∫ x in a..b, f x ∂μ :=
358
+ @[simp] lemma integral_smul (r : ℝ) : ∫ x in a..b, r • f x ∂μ = r • ∫ x in a..b, f x ∂μ :=
359
359
by simp only [interval_integral, integral_smul, smul_sub]
360
360
361
361
lemma integral_const' (c : E) :
@@ -389,23 +389,23 @@ begin
389
389
{ simp [(show 0 < c, from h), mul_div_cancel, hc, abs_of_pos] }
390
390
end
391
391
392
- @[simp] lemma integral_comp_mul_right' (c) :
392
+ @[simp] lemma smul_integral_comp_mul_right (c) :
393
393
c • ∫ x in a..b, f (x * c) = ∫ x in a*c..b*c, f x :=
394
394
by by_cases hc : c = 0 ; simp [hc]
395
395
396
396
@[simp] lemma integral_comp_mul_left (hc : c ≠ 0 ) :
397
397
∫ x in a..b, f (c * x) = c⁻¹ • ∫ x in c*a..c*b, f x :=
398
398
by simpa only [mul_comm c] using integral_comp_mul_right f hc
399
399
400
- @[simp] lemma integral_comp_mul_left' (c) :
400
+ @[simp] lemma smul_integral_comp_mul_left (c) :
401
401
c • ∫ x in a..b, f (c * x) = ∫ x in c*a..c*b, f x :=
402
402
by by_cases hc : c = 0 ; simp [hc]
403
403
404
404
@[simp] lemma integral_comp_div (hc : c ≠ 0 ) :
405
405
∫ x in a..b, f (x / c) = c • ∫ x in a/c..b/c, f x :=
406
406
by simpa only [inv_inv'] using integral_comp_mul_right f (inv_ne_zero hc)
407
407
408
- @[simp] lemma integral_comp_div' (c) :
408
+ @[simp] lemma inv_smul_integral_comp_div (c) :
409
409
c⁻¹ • ∫ x in a..b, f (x / c) = ∫ x in a/c..b/c, f x :=
410
410
by by_cases hc : c = 0 ; simp [hc]
411
411
@@ -421,39 +421,39 @@ calc ∫ x in a..b, f (x + d)
421
421
∫ x in a..b, f (c * x + d) = c⁻¹ • ∫ x in c*a+d..c*b+d, f x :=
422
422
by rw [← integral_comp_add_right f d, ← integral_comp_mul_left _ hc]
423
423
424
- @[simp] lemma integral_comp_mul_add' (c d) :
424
+ @[simp] lemma smul_integral_comp_mul_add (c d) :
425
425
c • ∫ x in a..b, f (c * x + d) = ∫ x in c*a+d..c*b+d, f x :=
426
426
by by_cases hc : c = 0 ; simp [hc]
427
427
428
428
@[simp] lemma integral_comp_add_mul (hc : c ≠ 0 ) (d) :
429
429
∫ x in a..b, f (d + c * x) = c⁻¹ • ∫ x in d+c*a..d+c*b, f x :=
430
430
by simpa only [add_comm] using integral_comp_mul_add f hc d
431
431
432
- @[simp] lemma integral_comp_add_mul' (c d) :
432
+ @[simp] lemma smul_integral_comp_add_mul (c d) :
433
433
c • ∫ x in a..b, f (d + c * x) = ∫ x in d+c*a..d+c*b, f x :=
434
434
by by_cases hc : c = 0 ; simp [hc]
435
435
436
436
@[simp] lemma integral_comp_div_add (hc : c ≠ 0 ) (d) :
437
437
∫ x in a..b, f (x / c + d) = c • ∫ x in a/c+d..b/c+d, f x :=
438
438
by simpa only [div_eq_inv_mul, inv_inv'] using integral_comp_mul_add f (inv_ne_zero hc) d
439
439
440
- @[simp] lemma integral_comp_div_add' (c d) :
440
+ @[simp] lemma inv_smul_integral_comp_div_add (c d) :
441
441
c⁻¹ • ∫ x in a..b, f (x / c + d) = ∫ x in a/c+d..b/c+d, f x :=
442
442
by by_cases hc : c = 0 ; simp [hc]
443
443
444
444
@[simp] lemma integral_comp_add_div (hc : c ≠ 0 ) (d) :
445
445
∫ x in a..b, f (d + x / c) = c • ∫ x in d+a/c..d+b/c, f x :=
446
446
by simpa only [div_eq_inv_mul, inv_inv'] using integral_comp_add_mul f (inv_ne_zero hc) d
447
447
448
- @[simp] lemma integral_comp_add_div' (c d) :
448
+ @[simp] lemma inv_smul_integral_comp_add_div (c d) :
449
449
c⁻¹ • ∫ x in a..b, f (d + x / c) = ∫ x in d+a/c..d+b/c, f x :=
450
450
by by_cases hc : c = 0 ; simp [hc]
451
451
452
452
@[simp] lemma integral_comp_mul_sub (hc : c ≠ 0 ) (d) :
453
453
∫ x in a..b, f (c * x - d) = c⁻¹ • ∫ x in c*a-d..c*b-d, f x :=
454
454
by simpa only [sub_eq_add_neg] using integral_comp_mul_add f hc (-d)
455
455
456
- @[simp] lemma integral_comp_mul_sub' (c d) :
456
+ @[simp] lemma smul_integral_comp_mul_sub (c d) :
457
457
c • ∫ x in a..b, f (c * x - d) = ∫ x in c*a-d..c*b-d, f x :=
458
458
by by_cases hc : c = 0 ; simp [hc]
459
459
@@ -465,23 +465,23 @@ begin
465
465
simp only [inv_neg, smul_neg, neg_neg, neg_smul],
466
466
end
467
467
468
- @[simp] lemma integral_comp_sub_mul' (c d) :
468
+ @[simp] lemma smul_integral_comp_sub_mul (c d) :
469
469
c • ∫ x in a..b, f (d - c * x) = ∫ x in d-c*b..d-c*a, f x :=
470
470
by by_cases hc : c = 0 ; simp [hc]
471
471
472
472
@[simp] lemma integral_comp_div_sub (hc : c ≠ 0 ) (d) :
473
473
∫ x in a..b, f (x / c - d) = c • ∫ x in a/c-d..b/c-d, f x :=
474
474
by simpa only [div_eq_inv_mul, inv_inv'] using integral_comp_mul_sub f (inv_ne_zero hc) d
475
475
476
- @[simp] lemma integral_comp_div_sub' (c d) :
476
+ @[simp] lemma inv_smul_integral_comp_div_sub (c d) :
477
477
c⁻¹ • ∫ x in a..b, f (x / c - d) = ∫ x in a/c-d..b/c-d, f x :=
478
478
by by_cases hc : c = 0 ; simp [hc]
479
479
480
480
@[simp] lemma integral_comp_sub_div (hc : c ≠ 0 ) (d) :
481
481
∫ x in a..b, f (d - x / c) = c • ∫ x in d-b/c..d-a/c, f x :=
482
482
by simpa only [div_eq_inv_mul, inv_inv'] using integral_comp_sub_mul f (inv_ne_zero hc) d
483
483
484
- @[simp] lemma integral_comp_sub_div' (c d) :
484
+ @[simp] lemma inv_smul_integral_comp_sub_div (c d) :
485
485
c⁻¹ • ∫ x in a..b, f (d - x / c) = ∫ x in d-b/c..d-a/c, f x :=
486
486
by by_cases hc : c = 0 ; simp [hc]
487
487
0 commit comments