@@ -2488,11 +2488,12 @@ respectively by `𝕜'` and `𝕜` where `𝕜'` is a normed algebra over `𝕜`
2488
2488
-/
2489
2489
2490
2490
variables (𝕜 : Type *) [nondiscrete_normed_field 𝕜]
2491
- {𝕜' : Type *} [nondiscrete_normed_field 𝕜'] [normed_algebra 𝕜 𝕜']
2492
- {E : Type *} [normed_group E] [normed_space 𝕜' E]
2493
- {F : Type *} [normed_group F] [normed_space 𝕜' F]
2494
- {f : semimodule.restrict_scalars 𝕜 𝕜' E → semimodule.restrict_scalars 𝕜 𝕜' F}
2495
- {f' : semimodule.restrict_scalars 𝕜 𝕜' E →L[𝕜'] semimodule.restrict_scalars 𝕜 𝕜' F} {s : set E} {x : E}
2491
+ variables {𝕜' : Type *} [nondiscrete_normed_field 𝕜'] [normed_algebra 𝕜 𝕜']
2492
+ variables {E : Type *} [normed_group E] [normed_space 𝕜 E] [normed_space 𝕜' E]
2493
+ variables [is_scalar_tower 𝕜 𝕜' E]
2494
+ variables {F : Type *} [normed_group F] [normed_space 𝕜 F] [normed_space 𝕜' F]
2495
+ variables [is_scalar_tower 𝕜 𝕜' F]
2496
+ variables {f : E → F} {f' : E →L[𝕜'] F} {s : set E} {x : E}
2496
2497
2497
2498
lemma has_strict_fderiv_at.restrict_scalars (h : has_strict_fderiv_at f f' x) :
2498
2499
has_strict_fderiv_at f (f'.restrict_scalars 𝕜) x := h
@@ -2532,12 +2533,12 @@ by a normed algebra `𝕜'` over `𝕜`.
2532
2533
section smul_algebra
2533
2534
2534
2535
variables {𝕜 : Type *} [nondiscrete_normed_field 𝕜]
2535
- {𝕜' : Type *} [nondiscrete_normed_field 𝕜'] [normed_algebra 𝕜 𝕜']
2536
- {E : Type *} [normed_group E] [normed_space 𝕜 E]
2537
- {F : Type *} [normed_group F] [normed_space 𝕜' F]
2538
- {f : E → semimodule.restrict_scalars 𝕜 𝕜' F}
2539
- {f ' : E →L[𝕜] semimodule.restrict_scalars 𝕜 𝕜' F} {s : set E} {x : E}
2540
- {c : E → 𝕜'} {c' : E →L[𝕜] 𝕜'} {L : filter E}
2536
+ variables {𝕜' : Type *} [nondiscrete_normed_field 𝕜'] [normed_algebra 𝕜 𝕜']
2537
+ variables {E : Type *} [normed_group E] [normed_space 𝕜 E]
2538
+ variables {F : Type *} [normed_group F] [normed_space 𝕜 F] [normed_space 𝕜' F]
2539
+ variables [is_scalar_tower 𝕜 𝕜' F]
2540
+ variables {f : E → F} {f ' : E →L[𝕜] F} {s : set E} {x : E}
2541
+ variables {c : E → 𝕜'} {c' : E →L[𝕜] 𝕜'} {L : filter E}
2541
2542
2542
2543
theorem has_strict_fderiv_at.smul_algebra (hc : has_strict_fderiv_at c c' x)
2543
2544
(hf : has_strict_fderiv_at f f' x) :
@@ -2586,60 +2587,58 @@ lemma fderiv_smul_algebra (hc : differentiable_at 𝕜 c x) (hf : differentiable
2586
2587
(hc.has_fderiv_at.smul_algebra hf.has_fderiv_at).fderiv
2587
2588
2588
2589
theorem has_strict_fderiv_at.smul_algebra_const
2589
- (hc : has_strict_fderiv_at c c' x) (f : semimodule.restrict_scalars 𝕜 𝕜' F) :
2590
+ (hc : has_strict_fderiv_at c c' x) (f : F) :
2590
2591
has_strict_fderiv_at (λ y, c y • f) (c'.smul_algebra_right f) x :=
2591
2592
by simpa only [smul_zero, zero_add] using hc.smul_algebra (has_strict_fderiv_at_const f x)
2592
2593
2593
2594
theorem has_fderiv_within_at.smul_algebra_const
2594
- (hc : has_fderiv_within_at c c' s x) (f : semimodule.restrict_scalars 𝕜 𝕜' F) :
2595
+ (hc : has_fderiv_within_at c c' s x) (f : F) :
2595
2596
has_fderiv_within_at (λ y, c y • f) (c'.smul_algebra_right f) s x :=
2596
2597
by simpa only [smul_zero, zero_add] using hc.smul_algebra (has_fderiv_within_at_const f x s)
2597
2598
2598
2599
theorem has_fderiv_at.smul_algebra_const
2599
- (hc : has_fderiv_at c c' x) (f : semimodule.restrict_scalars 𝕜 𝕜' F) :
2600
+ (hc : has_fderiv_at c c' x) (f : F) :
2600
2601
has_fderiv_at (λ y, c y • f) (c'.smul_algebra_right f) x :=
2601
2602
by simpa only [smul_zero, zero_add] using hc.smul_algebra (has_fderiv_at_const f x)
2602
2603
2603
2604
lemma differentiable_within_at.smul_algebra_const
2604
- (hc : differentiable_within_at 𝕜 c s x) (f : semimodule.restrict_scalars 𝕜 𝕜' F) :
2605
+ (hc : differentiable_within_at 𝕜 c s x) (f : F) :
2605
2606
differentiable_within_at 𝕜 (λ y, c y • f) s x :=
2606
2607
(hc.has_fderiv_within_at.smul_algebra_const f).differentiable_within_at
2607
2608
2608
2609
lemma differentiable_at.smul_algebra_const
2609
- (hc : differentiable_at 𝕜 c x) (f : semimodule.restrict_scalars 𝕜 𝕜' F) :
2610
+ (hc : differentiable_at 𝕜 c x) (f : F) :
2610
2611
differentiable_at 𝕜 (λ y, c y • f) x :=
2611
2612
(hc.has_fderiv_at.smul_algebra_const f).differentiable_at
2612
2613
2613
2614
lemma differentiable_on.smul_algebra_const
2614
- (hc : differentiable_on 𝕜 c s) (f : semimodule.restrict_scalars 𝕜 𝕜' F) :
2615
+ (hc : differentiable_on 𝕜 c s) (f : F) :
2615
2616
differentiable_on 𝕜 (λ y, c y • f) s :=
2616
2617
λx hx, (hc x hx).smul_algebra_const f
2617
2618
2618
2619
lemma differentiable.smul_algebra_const
2619
- (hc : differentiable 𝕜 c) (f : semimodule.restrict_scalars 𝕜 𝕜' F) :
2620
+ (hc : differentiable 𝕜 c) (f : F) :
2620
2621
differentiable 𝕜 (λ y, c y • f) :=
2621
2622
λx, (hc x).smul_algebra_const f
2622
2623
2623
2624
lemma fderiv_within_smul_algebra_const (hxs : unique_diff_within_at 𝕜 s x)
2624
- (hc : differentiable_within_at 𝕜 c s x) (f : semimodule.restrict_scalars 𝕜 𝕜' F) :
2625
+ (hc : differentiable_within_at 𝕜 c s x) (f : F) :
2625
2626
fderiv_within 𝕜 (λ y, c y • f) s x =
2626
2627
(fderiv_within 𝕜 c s x).smul_algebra_right f :=
2627
2628
(hc.has_fderiv_within_at.smul_algebra_const f).fderiv_within hxs
2628
2629
2629
2630
lemma fderiv_smul_algebra_const
2630
- (hc : differentiable_at 𝕜 c x) (f : semimodule.restrict_scalars 𝕜 𝕜' F) :
2631
+ (hc : differentiable_at 𝕜 c x) (f : F) :
2631
2632
fderiv 𝕜 (λ y, c y • f) x = (fderiv 𝕜 c x).smul_algebra_right f :=
2632
2633
(hc.has_fderiv_at.smul_algebra_const f).fderiv
2633
2634
2634
2635
theorem has_strict_fderiv_at.const_smul_algebra (h : has_strict_fderiv_at f f' x) (c : 𝕜') :
2635
2636
has_strict_fderiv_at (λ x, c • f x) (c • f') x :=
2636
- (c • (1 : (semimodule.restrict_scalars 𝕜 𝕜' F) →L[𝕜] ((semimodule.restrict_scalars 𝕜 𝕜' F))))
2637
- .has_strict_fderiv_at.comp x h
2637
+ (c • (1 : F →L[𝕜] F)).has_strict_fderiv_at.comp x h
2638
2638
2639
2639
theorem has_fderiv_at_filter.const_smul_algebra (h : has_fderiv_at_filter f f' x L) (c : 𝕜') :
2640
2640
has_fderiv_at_filter (λ x, c • f x) (c • f') x L :=
2641
- (c • (1 : (semimodule.restrict_scalars 𝕜 𝕜' F) →L[𝕜] ((semimodule.restrict_scalars 𝕜 𝕜' F))))
2642
- .has_fderiv_at_filter.comp x h
2641
+ (c • (1 : F →L[𝕜] F)).has_fderiv_at_filter.comp x h
2643
2642
2644
2643
theorem has_fderiv_within_at.const_smul_algebra (h : has_fderiv_within_at f f' s x) (c : 𝕜') :
2645
2644
has_fderiv_within_at (λ x, c • f x) (c • f') s x :=
0 commit comments