Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 72d7ae1

Browse files
committed
chore(counterexamples/cyclotomic_105): golf (#17652)
1 parent 18b61ef commit 72d7ae1

File tree

1 file changed

+12
-28
lines changed

1 file changed

+12
-28
lines changed

counterexamples/cyclotomic_105.lean

Lines changed: 12 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -14,13 +14,12 @@ theorem `not_forall_coeff_cyclotomic_neg_one_zero_one`. We prove this with the c
1414
`coeff_cyclotomic_105 : coeff (cyclotomic 105 ℤ) 7 = -2`.
1515
-/
1616

17-
section computation
18-
19-
lemma prime_3 : nat.prime 3 := by norm_num
17+
open nat (proper_divisors) finset
2018

21-
lemma prime_5 : nat.prime 5 := by norm_num
19+
section computation
2220

23-
lemma prime_7 : nat.prime 7 := by norm_num
21+
instance nat.fact_prime_five : fact (nat.prime 5) := ⟨by norm_num⟩
22+
instance nat.fact_prime_seven : fact (nat.prime 7) := ⟨by norm_num⟩
2423

2524
lemma proper_divisors_15 : nat.proper_divisors 15 = {1, 3, 5} := rfl
2625

@@ -35,32 +34,17 @@ end computation
3534
open polynomial
3635

3736
lemma cyclotomic_3 : cyclotomic 3 ℤ = 1 + X + X ^ 2 :=
38-
begin
39-
refine ((eq_cyclotomic_iff (show 0 < 3, by norm_num) _).2 _).symm,
40-
rw nat.prime.proper_divisors prime_3,
41-
simp only [finset.prod_singleton, cyclotomic_one],
42-
ring
43-
end
37+
by simp only [cyclotomic_prime, sum_range_succ, range_one, sum_singleton, pow_zero, pow_one]
4438

4539
lemma cyclotomic_5 : cyclotomic 5 ℤ = 1 + X + X ^ 2 + X ^ 3 + X ^ 4 :=
46-
begin
47-
refine ((eq_cyclotomic_iff (nat.prime.pos prime_5) _).2 _).symm,
48-
rw nat.prime.proper_divisors prime_5,
49-
simp only [finset.prod_singleton, cyclotomic_one],
50-
ring
51-
end
40+
by simp only [cyclotomic_prime, sum_range_succ, range_one, sum_singleton, pow_zero, pow_one]
5241

5342
lemma cyclotomic_7 : cyclotomic 7 ℤ = 1 + X + X ^ 2 + X ^ 3 + X ^ 4 + X ^ 5 + X ^ 6 :=
54-
begin
55-
refine ((eq_cyclotomic_iff (nat.prime.pos prime_7) _).2 _).symm,
56-
rw nat.prime.proper_divisors prime_7,
57-
simp only [finset.prod_singleton, cyclotomic_one],
58-
ring
59-
end
43+
by simp only [cyclotomic_prime, sum_range_succ, range_one, sum_singleton, pow_zero, pow_one]
6044

6145
lemma cyclotomic_15 : cyclotomic 15 ℤ = 1 - X + X ^ 3 - X ^ 4 + X ^ 5 - X ^ 7 + X ^ 8 :=
6246
begin
63-
refine ((eq_cyclotomic_iff (show 0 < 15, by norm_num) _).2 _).symm,
47+
refine ((eq_cyclotomic_iff (by norm_num) _).2 _).symm,
6448
rw [proper_divisors_15, finset.prod_insert _, finset.prod_insert _, finset.prod_singleton,
6549
cyclotomic_one, cyclotomic_3, cyclotomic_5],
6650
ring,
@@ -70,7 +54,7 @@ end
7054
lemma cyclotomic_21 : cyclotomic 21 ℤ =
7155
1 - X + X ^ 3 - X ^ 4 + X ^ 6 - X ^ 8 + X ^ 9 - X ^ 11 + X ^ 12 :=
7256
begin
73-
refine ((eq_cyclotomic_iff (show 0 < 21, by norm_num) _).2 _).symm,
57+
refine ((eq_cyclotomic_iff (by norm_num) _).2 _).symm,
7458
rw [proper_divisors_21, finset.prod_insert _, finset.prod_insert _, finset.prod_singleton,
7559
cyclotomic_one, cyclotomic_3, cyclotomic_7],
7660
ring,
@@ -81,7 +65,7 @@ lemma cyclotomic_35 : cyclotomic 35 ℤ =
8165
1 - X + X ^ 5 - X ^ 6 + X ^ 7 - X ^ 8 + X ^ 10 - X ^ 11 + X ^ 12 - X ^ 13 + X ^ 14 - X ^ 16 +
8266
X ^ 17 - X ^ 18 + X ^ 19 - X ^ 23 + X ^ 24 :=
8367
begin
84-
refine ((eq_cyclotomic_iff (show 0 < 35, by norm_num) _).2 _).symm,
68+
refine ((eq_cyclotomic_iff (by norm_num) _).2 _).symm,
8569
rw [proper_divisors_35, finset.prod_insert _, finset.prod_insert _, finset.prod_singleton,
8670
cyclotomic_one, cyclotomic_5, cyclotomic_7],
8771
ring,
@@ -94,7 +78,7 @@ lemma cyclotomic_105 : cyclotomic 105 ℤ =
9478
X ^ 34 + X ^ 35 + X ^ 36 - X ^ 39 - X ^ 40 - 2 * X ^ 41 - X ^ 42 - X ^ 43 + X ^ 46 + X ^ 47 +
9579
X ^ 48 :=
9680
begin
97-
refine ((eq_cyclotomic_iff (show 0 < 105, by norm_num) _).2 _).symm,
81+
refine ((eq_cyclotomic_iff (by norm_num) _).2 _).symm,
9882
rw proper_divisors_105,
9983
repeat {rw finset.prod_insert _},
10084
rw [finset.prod_singleton, cyclotomic_one, cyclotomic_3, cyclotomic_5, cyclotomic_7,
@@ -112,7 +96,7 @@ lemma not_forall_coeff_cyclotomic_neg_one_zero_one :
11296
¬∀ n i, coeff (cyclotomic n ℤ) i ∈ ({-1, 0, 1} : set ℤ) :=
11397
begin
11498
intro h,
115-
replace h := h 105 7,
99+
specialize h 105 7,
116100
rw coeff_cyclotomic_105 at h,
117101
norm_num at h
118102
end

0 commit comments

Comments
 (0)