@@ -91,12 +91,12 @@ lemma borel_eq_generate_Iio (α)
91
91
begin
92
92
refine le_antisymm _ (generate_from_le _),
93
93
{ rw borel_eq_generate_from_of_subbasis (@order_topology.topology_eq_generate_intervals α _ _ _),
94
- have H : ∀ a:α, is_measurable ( measurable_space.generate_from (range Iio)) (Iio a) :=
95
- λ a, generate_measurable.basic _ ⟨_, rfl⟩,
94
+ letI : measurable_space α := measurable_space.generate_from (range Iio),
95
+ have H : ∀ a:α, is_measurable (Iio a) := λ a, generate_measurable.basic _ ⟨_, rfl⟩,
96
96
refine generate_from_le _, rintro _ ⟨a, rfl | rfl⟩; [skip, apply H],
97
97
by_cases h : ∃ a', ∀ b, a < b ↔ a' ≤ b,
98
98
{ rcases h with ⟨a', ha'⟩,
99
- rw (_ : Ioi a = (Iio a')ᶜ), {exact (H _).compl _ },
99
+ rw (_ : Ioi a = (Iio a')ᶜ), { exact (H _).compl },
100
100
simp [set.ext_iff, ha'] },
101
101
{ rcases is_open_Union_countable
102
102
(λ a' : {a' : α // a < a'}, {b | a'.1 < b})
@@ -112,7 +112,7 @@ begin
112
112
lt_of_lt_of_le ax⟩⟩ },
113
113
rw this , resetI,
114
114
apply is_measurable.Union,
115
- exact λ _, (H _).compl _ } },
115
+ exact λ _, (H _).compl } },
116
116
{ rw forall_range_iff,
117
117
intro a,
118
118
exact generate_measurable.basic _ is_open_Iio }
@@ -564,8 +564,8 @@ lemma measure_ext_Ioo_rat {μ ν : measure ℝ} [locally_finite_measure μ]
564
564
begin
565
565
refine measure.ext_of_generate_from_of_cover_subset borel_eq_generate_from_Ioo_rat _
566
566
(subset.refl _) _ _ _ _,
567
- { simp only [mem_Union, mem_singleton_iff],
568
- rintros _ ⟨a₁, b₁, h₁, rfl⟩ _ ⟨a₂, b₂, h₂, rfl⟩ ne,
567
+ { simp only [is_pi_system, mem_Union, mem_singleton_iff],
568
+ rintros _ _ ⟨a₁, b₁, h₁, rfl⟩ ⟨a₂, b₂, h₂, rfl⟩ ne,
569
569
simp only [Ioo_inter_Ioo, sup_eq_max, inf_eq_min, ← rat.cast_max, ← rat.cast_min, nonempty_Ioo] at ne ⊢,
570
570
refine ⟨_, _, _, rfl⟩,
571
571
assumption_mod_cast },
@@ -591,8 +591,8 @@ begin
591
591
simp only [mem_Union], rintro ⟨a, b, h, H⟩,
592
592
rw [mem_singleton_iff.1 H],
593
593
rw (set.ext (λ x, _) : Ioo (a:ℝ) b = (⋃c>a, (Iio c)ᶜ) ∩ Iio b),
594
- { have hg : ∀q: ℚ, g.is_measurable (Iio q) :=
595
- λ q, generate_measurable.basic _ (by simp; exact ⟨_, rfl⟩),
594
+ { have hg : ∀ q : ℚ, g.is_measurable' (Iio q) :=
595
+ λ q, generate_measurable.basic (Iio q) (by { simp, exact ⟨_, rfl⟩ } ),
596
596
refine @is_measurable.inter _ g _ _ _ (hg _),
597
597
refine @is_measurable.bUnion _ _ g _ _ (countable_encodable _) (λ c h, _),
598
598
exact @is_measurable.compl _ _ g (hg _) },
@@ -602,8 +602,7 @@ begin
602
602
let ⟨c, ac, cx⟩ := exists_rat_btwn h in
603
603
⟨c, rat.cast_lt.1 ac, le_of_lt cx⟩,
604
604
λ ⟨c, ac, cx⟩, lt_of_lt_of_le (rat.cast_lt.2 ac) cx⟩ } },
605
- { simp, rintro r rfl,
606
- exact is_open_Iio.is_measurable }
605
+ { simp, rintro r rfl, exact is_open_Iio.is_measurable }
607
606
end
608
607
609
608
end real
@@ -695,15 +694,9 @@ begin
695
694
measurable_const }
696
695
end
697
696
698
- lemma measurable.ennreal_add {α : Type *} [measurable_space α] {f g : α → ennreal} :
699
- measurable f → measurable g → measurable (λa, f a + g a) :=
700
- begin
701
- refine ennreal.measurable_of_measurable_nnreal_nnreal (+) _ _ _,
702
- { simp only [ennreal.coe_add.symm],
703
- exact ennreal.measurable_coe.comp measurable_add },
704
- { simp [measurable_const] },
705
- { simp [measurable_const] }
706
- end
697
+ lemma measurable.ennreal_add {α : Type *} [measurable_space α] {f g : α → ennreal}
698
+ (hf : measurable f) (hg : measurable g) : measurable (λa, f a + g a) :=
699
+ hf.add hg
707
700
708
701
lemma measurable.ennreal_sub {α : Type *} [measurable_space α] {f g : α → ennreal} :
709
702
measurable f → measurable g → measurable (λa, f a - g a) :=
0 commit comments