@@ -502,7 +502,7 @@ instance : has_singleton Set Set := ⟨λ x, insert x ∅⟩
502
502
503
503
instance : is_lawful_singleton Set Set := ⟨λ x, rfl⟩
504
504
505
- @[simp] theorem mem_insert {x y z : Set.{u}} : x ∈ insert y z ↔ x = y ∨ x ∈ z :=
505
+ @[simp] theorem mem_insert_iff {x y z : Set.{u}} : x ∈ insert y z ↔ x = y ∨ x ∈ z :=
506
506
quotient.induction_on₃ x y z
507
507
(λ x y ⟨α, A⟩, show x ∈ pSet.mk (option α) (λ o, option.rec y A o) ↔
508
508
mk x = mk y ∨ x ∈ pSet.mk α A, from
@@ -514,11 +514,14 @@ quotient.induction_on₃ x y z
514
514
| or.inl h := ⟨none, quotient.exact h⟩
515
515
end ⟩)
516
516
517
+ theorem mem_insert (x y : Set) : x ∈ insert x y := mem_insert_iff.2 $ or.inl rfl
518
+ theorem mem_insert_of_mem {y z : Set} (x) (h : z ∈ y): z ∈ insert x y := mem_insert_iff.2 $ or.inr h
519
+
517
520
@[simp] theorem mem_singleton {x y : Set.{u}} : x ∈ @singleton Set.{u} Set.{u} _ y ↔ x = y :=
518
- iff.trans mem_insert ⟨λ o, or.rec (λ h, h) (λ n, absurd n (mem_empty _)) o, or.inl⟩
521
+ iff.trans mem_insert_iff ⟨λ o, or.rec (λ h, h) (λ n, absurd n (mem_empty _)) o, or.inl⟩
519
522
520
523
@[simp] theorem mem_pair {x y z : Set.{u}} : x ∈ ({y, z} : Set) ↔ x = y ∨ x = z :=
521
- iff.trans mem_insert $ or_congr iff.rfl mem_singleton
524
+ iff.trans mem_insert_iff $ or_congr iff.rfl mem_singleton
522
525
523
526
/-- `omega` is the first infinite von Neumann ordinal -/
524
527
def omega : Set := mk omega
@@ -813,7 +816,7 @@ set.ext $ λ y, Set.mem_sep
813
816
set.ext $ λ y, (iff_false _).2 (Set.mem_empty y)
814
817
815
818
@[simp] theorem insert_hom (x y : Set.{u}) : (@insert Set.{u} Class.{u} _ x y) = ↑(insert x y) :=
816
- set.ext $ λ z, iff.symm Set.mem_insert
819
+ set.ext $ λ z, iff.symm Set.mem_insert_iff
817
820
818
821
@[simp] theorem union_hom (x y : Set.{u}) : (x : Class.{u}) ∪ y = (x ∪ y : Set.{u}) :=
819
822
set.ext $ λ z, iff.symm Set.mem_union
0 commit comments