@@ -592,34 +592,57 @@ end
592
592
lemma of_real_to_real_ae_eq {f : α → ℝ≥0 ∞} (hf : ∀ᵐ x ∂μ, f x < ∞) :
593
593
(λ x, ennreal.of_real (f x).to_real) =ᵐ[μ] f :=
594
594
begin
595
- rw ae_iff at hf,
596
- rw [filter.eventually_eq, ae_iff],
597
- have : {x | ¬ ennreal.of_real (f x).to_real = f x} = {x | f x = ∞},
598
- { ext x,
599
- simp only [ne.def, set.mem_set_of_eq],
600
- split; intro hx,
601
- { by_contra hntop,
602
- exact hx (ennreal.of_real_to_real hntop) },
603
- { rw hx, simp } },
604
- rw this ,
605
- simpa using hf,
595
+ filter_upwards [hf],
596
+ assume x hx,
597
+ simp only [hx.ne, of_real_to_real, ne.def, not_false_iff],
598
+ end
599
+
600
+ lemma coe_to_nnreal_ae_eq {f : α → ℝ≥0 ∞} (hf : ∀ᵐ x ∂μ, f x < ∞) :
601
+ (λ x, ((f x).to_nnreal : ℝ≥0 ∞)) =ᵐ[μ] f :=
602
+ begin
603
+ filter_upwards [hf],
604
+ assume x hx,
605
+ simp only [hx.ne, ne.def, not_false_iff, coe_to_nnreal],
606
+ end
607
+
608
+ lemma integrable_with_density_iff_integrable_smul
609
+ {E : Type *} [normed_group E] [normed_space ℝ E] [second_countable_topology E]
610
+ [measurable_space E] [borel_space E]
611
+ {f : α → ℝ≥0 } (hf : measurable f) {g : α → E} :
612
+ integrable g (μ.with_density (λ x, (f x : ℝ≥0 ∞))) ↔ integrable (λ x, (f x : ℝ) • g x) μ :=
613
+ begin
614
+ by_cases H : ae_measurable (λ (x : α), (f x : ℝ) • g x) μ,
615
+ { simp only [integrable, ae_measurable_with_density_iff hf, has_finite_integral, H, true_and],
616
+ rw lintegral_with_density_eq_lintegral_mul₀' hf.coe_nnreal_ennreal.ae_measurable,
617
+ { congr',
618
+ ext1 x,
619
+ simp only [nnnorm_smul, nnreal.nnnorm_eq, coe_mul, pi.mul_apply] },
620
+ { rw ae_measurable_with_density_ennreal_iff hf,
621
+ convert H.nnnorm.coe_nnreal_ennreal,
622
+ ext1 x,
623
+ simp only [nnnorm_smul, nnreal.nnnorm_eq, coe_mul] } },
624
+ { simp only [integrable, ae_measurable_with_density_iff hf, H, false_and] }
625
+ end
626
+
627
+ lemma integrable_with_density_iff_integrable_smul'
628
+ {E : Type *} [normed_group E] [normed_space ℝ E] [second_countable_topology E]
629
+ [measurable_space E] [borel_space E]
630
+ {f : α → ℝ≥0 ∞} (hf : measurable f) (hflt : ∀ᵐ x ∂μ, f x < ∞) {g : α → E} :
631
+ integrable g (μ.with_density f) ↔ integrable (λ x, (f x).to_real • g x) μ :=
632
+ begin
633
+ rw [← with_density_congr_ae (coe_to_nnreal_ae_eq hflt),
634
+ integrable_with_density_iff_integrable_smul],
635
+ { refl },
636
+ { exact hf.ennreal_to_nnreal },
606
637
end
607
638
608
639
lemma integrable_with_density_iff {f : α → ℝ≥0 ∞} (hf : measurable f)
609
- (hflt : ∀ᵐ x ∂μ, f x < ∞) {g : α → ℝ} (hg : measurable g) :
640
+ (hflt : ∀ᵐ x ∂μ, f x < ∞) {g : α → ℝ} :
610
641
integrable g (μ.with_density f) ↔ integrable (λ x, g x * (f x).to_real) μ :=
611
642
begin
612
- simp only [integrable, has_finite_integral, hg.ae_measurable.mul hf.ae_measurable.ennreal_to_real,
613
- hg.ae_measurable, true_and, coe_mul, normed_field.nnnorm_mul],
614
- suffices h_int_eq : ∫⁻ a, ∥g a∥₊ ∂μ.with_density f = ∫⁻ a, ∥g a∥₊ * ∥(f a).to_real∥₊ ∂μ,
615
- by rw h_int_eq,
616
- rw lintegral_with_density_eq_lintegral_mul _ hf hg.nnnorm.coe_nnreal_ennreal,
617
- refine lintegral_congr_ae _,
618
- rw mul_comm,
619
- refine filter.eventually_eq.mul (ae_eq_refl _) ((of_real_to_real_ae_eq hflt).symm.trans _),
620
- convert ae_eq_refl _,
621
- ext1 x,
622
- exact real.ennnorm_eq_of_real ennreal.to_real_nonneg,
643
+ have : (λ x, g x * (f x).to_real) = (λ x, (f x).to_real • g x), by simp [mul_comm],
644
+ rw this ,
645
+ exact integrable_with_density_iff_integrable_smul' hf hflt,
623
646
end
624
647
625
648
lemma mem_ℒ1_to_real_of_lintegral_ne_top
0 commit comments